862 research outputs found
Linking urban design to sustainability : formal indicators of social urban sustainability field research in Perth, Western Australia
The making of a livable urban community is a complex endeavor. For much of the 20th Century plannersand engineers believed that modern and rational decision-making would create successful cities. Today, political leaders across the globe are considering ways to promote sustainable development and the concepts of New Urbanism are making their way from the drawing board to the ground. While much has changed in the world, the creation of a successful street is as much of an art today as it was in the 1960s.Our work seeks to investigate 'street life' in cities as a crucial factor towards community success. What arethe components of the neighborhood and street form that contributes to the richness of street life? To answer this question we rely on the literature. The aim of the Formal Indicators of Social Urban Sustainability studyis to measure the formal components of a neighborhood and street that theorists have stated important in promoting sustainability. This paper will describe how this concept helps to bridge urban design and sustainability. It will describe the tool and show how this was applied in a comparative assessment of Joondalup and Fremantle, two urban centers in the Perth metropolitan area
Explicit Evidence Systems with Common Knowledge
Justification logics are epistemic logics that explicitly include
justifications for the agents' knowledge. We develop a multi-agent
justification logic with evidence terms for individual agents as well as for
common knowledge. We define a Kripke-style semantics that is similar to
Fitting's semantics for the Logic of Proofs LP. We show the soundness,
completeness, and finite model property of our multi-agent justification logic
with respect to this Kripke-style semantics. We demonstrate that our logic is a
conservative extension of Yavorskaya's minimal bimodal explicit evidence logic,
which is a two-agent version of LP. We discuss the relationship of our logic to
the multi-agent modal logic S4 with common knowledge. Finally, we give a brief
analysis of the coordinated attack problem in the newly developed language of
our logic
Ground-state van der Waals forces in planar multilayer magnetodielectrics
Within the frame of lowest-order perturbation theory, the van der Waals
potential of a ground-state atom placed within an arbitrary dispersing and
absorbing magnetodielectric multilayer system is given. Examples of an atom
situated in front of a magnetodielectric plate or between two such plates are
studied in detail. Special emphasis is placed on the competing attractive and
repulsive force components associated with the electric and magnetic matter
properties, respectively, and conditions for the formation of repulsive
potential walls are given. Both numerical and analytical results are presented.Comment: 16 pages, 8 figures, minor correction
Voltage rectification by a SQUID ratchet
We argue that the phase across an asymmetric dc SQUID threaded by a magnetic
flux can experience an effective ratchet (periodic and asymmetric) potential.
Under an external ac current, a rocking ratchet mechanism operates whereby one
sign of the time derivative of the phase is favored. We show that there exists
a range of parameters in which a fixed sign (and, in a narrower range, even a
fixed value) of the average voltage across the ring occurs, regardless of the
sign of the external current dc component.Comment: 4 pages, 4 EPS figures, uses psfig.sty. Revised version, to appear in
Physical Review Letters (26 August 1996
Casimir-Polder forces: A non-perturbative approach
Within the frame of macroscopic QED in linear, causal media, we study the
radiation force of Casimir-Polder type acting on an atom which is positioned
near dispersing and absorbing magnetodielectric bodies and initially prepared
in an arbitrary electronic state. It is shown that minimal and multipolar
coupling lead to essentially the same lowest-order perturbative result for the
force acting on an atom in an energy eigenstate. To go beyond perturbation
theory, the calculations are based on the exact center-of-mass equation of
motion. For a nondriven atom in the weak-coupling regime, the force as a
function of time is a superposition of force components that are related to the
electronic density-matrix elements at a chosen time. Even the force component
associated with the ground state is not derivable from a potential in the
ususal way, because of the position dependence of the atomic polarizability.
Further, when the atom is initially prepared in a coherent superposition of
energy eigenstates, then temporally oscillating force components are observed,
which are due to the interaction of the atom with both electric and magnetic
fields.Comment: 23 pages, 3 figures, additional misprints correcte
On the Second Law of thermodynamics and the piston problem
The piston problem is investigated in the case where the length of the
cylinder is infinite (on both sides) and the ratio is a very small
parameter, where is the mass of one particle of the gaz and is the mass
of the piston. Introducing initial conditions such that the stochastic motion
of the piston remains in the average at the origin (no drift), it is shown that
the time evolution of the fluids, analytically derived from Liouville equation,
agrees with the Second Law of thermodynamics.
We thus have a non equilibrium microscopical model whose evolution can be
explicitly shown to obey the two laws of thermodynamics.Comment: 29 pages, 9 figures submitted to Journal of Statistical Physics
(2003
Single-vortex-induced voltage steps in Josephson-junction arrays
We have numerically and analytically studied ac+dc driven Josephson-junction
arrays with a single vortex or with a single vortex-antivortex pair present. We
find single-vortex steps in the voltage versus current characteristics (I-V) of
the array. They correspond microscopically to a single vortex phase-locked to
move a fixed number of plaquettes per period of the ac driving current. In
underdamped arrays we find vortex motion period doubling on the steps. We
observe subharmonic steps in both underdamped and overdamped arrays. We
successfully compare these results with a phenomenological model of vortex
motion with a nonlinear viscosity. The I-V of an array with a vortex-antivortex
pair displays fractional voltage steps. A possible connection of these results
to present day experiments is also discussed.Comment: 10 pages double sided with figures included in the text. To appear in
Journal of Physics, Condensed Matte
Microwave studies of the fractional Josephson effect in HgTe-based Josephson junctions
The rise of topological phases of matter is strongly connected to their
potential to host Majorana bound states, a powerful ingredient in the search
for a robust, topologically protected, quantum information processing. In order
to produce such states, a method of choice is to induce superconductivity in
topological insulators. The engineering of the interplay between
superconductivity and the electronic properties of a topological insulator is a
challenging task and it is consequently very important to understand the
physics of simple superconducting devices such as Josephson junctions, in which
new topological properties are expected to emerge. In this article, we review
recent experiments investigating topological superconductivity in topological
insulators, using microwave excitation and detection techniques. More
precisely, we have fabricated and studied topological Josephson junctions made
of HgTe weak links in contact with two Al or Nb contacts. In such devices, we
have observed two signatures of the fractional Josephson effect, which is
expected to emerge from topologically-protected gapless Andreev bound states.
We first recall the theoretical background on topological Josephson junctions,
then move to the experimental observations. Then, we assess the topological
origin of the observed features and conclude with an outlook towards more
advanced microwave spectroscopy experiments, currently under development.Comment: Lectures given at the San Sebastian Topological Matter School 2017,
published in "Topological Matter. Springer Series in Solid-State Sciences,
vol 190. Springer
Timing of Favorable Conditions, Competition and Fertility Interact to Govern Recruitment of Invasive Chinese Tallow Tree in Stressful Environments
The rate of new exotic recruitment following removal of adult invaders (reinvasion pressure) influences restoration
outcomes and costs but is highly variable and poorly understood. We hypothesize that broad variation in average
reinvasion pressure of Triadica sebifera (Chinese tallow tree, a major invader) arises from differences among habitats in
spatiotemporal availability of realized recruitment windows. These windows are periods of variable duration long enough to
permit establishment given local environmental conditions. We tested this hypothesis via a greenhouse mesocosm
experiment that quantified how the duration of favorable moisture conditions prior to flood or drought stress (window
duration), competition and nutrient availability influenced Triadica success in high stress environments. Window duration
influenced pre-stress seedling abundance and size, growth during stress and final abundance; it interacted with other
factors to affect final biomass and germination during stress. Stress type and competition impacted final size and biomass,
plus germination, mortality and changes in size during stress. Final abundance also depended on competition and the
interaction of window duration, stress type and competition. Fertilization interacted with competition and stress to
influence biomass and changes in height, respectively, but did not affect Triadica abundance. Overall, longer window
durations promoted Triadica establishment, competition and drought (relative to flood) suppressed establishment, and
fertilization had weak effects. Interactions among factors frequently produced different effects in specific contexts. Results
support our ‘outgrow the stress’ hypothesis and show that temporal availability of abiotic windows and factors that
influence growth rates govern Triadica recruitment in stressful environments. These findings suggest that native seed
addition can effectively suppress superior competitors in stressful environments. We also describe environmental scenarios
where specific management methods may be more or less effective. Our results enable better niche-based estimates of
local reinvasion pressure, which can improve restoration efficacy and efficiency by informing site selection and optimal
Management
Dynamic ordering and frustration of confined vortex rows studied by mode-locking experiments
The flow properties of confined vortex matter driven through disordered
mesoscopic channels are investigated by mode locking (ML) experiments. The
observed ML effects allow to trace the evolution of both the structure and the
number of confined rows and their match to the channel width as function of
magnetic field. From a detailed analysis of the ML behavior for the case of
3-rows we obtain ({\it i}) the pinning frequency , ({\it ii}) the onset
frequency for ML ( ordering velocity) and ({\it iii}) the
fraction of coherently moving 3-row regions in the channel. The
field dependence of these quantities shows that, at matching, where is
maximum, the pinning strength is small and the ordering velocity is low, while
at mismatch, where is small, both the pinning force and the ordering
velocity are enhanced. Further, we find that , consistent
with the dynamic ordering theory of Koshelev and Vinokur. The microscopic
nature of the flow and the ordering phenomena will also be discussed.Comment: 10 pages, 7 figure, submitted to PRB. Discussion has been improved
and a figure has been adde
- …
