369 research outputs found

    Normal-Superconducting Phase Transition Mimicked by Current Noise

    Full text link
    As a superconductor goes from the normal state into the superconducting state, the voltage vs. current characteristics at low currents change from linear to non-linear. We show theoretically and experimentally that the addition of current noise to non-linear voltage vs. current curves will create ohmic behavior. Ohmic response at low currents for temperatures below the critical temperature TcT_c mimics the phase transition and leads to incorrect values for TcT_c and the critical exponents ν\nu and zz. The ohmic response occurs at low currents, when the applied current I0I_0 is smaller than the width of the probability distribution σI\sigma_I, and will occur in both the zero-field transition and the vortex-glass transition. Our results indicate that the transition temperature and critical exponents extracted from the conventional scaling analysis are inaccurate if current noise is not filtered out. This is a possible explanation for the wide range of critical exponents found in the literature.Comment: 4 pages, 2 figure

    Manifestation of vortex depinning transition in nonlinear current-voltage characteristics of polycrystalline superconductor Y_{1-x}Pr_{x}Ba_2Cu_3O_7

    Get PDF
    We present our recent results on the temperature dependence of current-voltage characteristics for polycrystalline Y_{1-x}Pr_{x}Ba_2Cu_3O_7 superconductors with x = 0.0, 0.1 and 0.3. The experimental results are found to be reasonably well fitted for all samples by a power like law. According to the theoretical interpretation of the obtained results, nonlinear deviation of our current-voltage characteristics curves from Ohmic behavior below Tc is attributed to the manifestation of dissipation processes related to the current induced depinning of Abrikosov vortices.Comment: Accepted for publication in PL

    Ubiquitous finite-size scaling features in IV characteristics of various dynamic XY models in two dimensions

    Full text link
    Two-dimensional (2D) XY model subject to three different types of dynamics, namely Monte Carlo, resistivity shunted junction (RSJ), and relaxational dynamics, is numerically simulated. From the comparisons of the current-voltage (I-V) characteristics, it is found that up to some constants I-V curves at a given temperature are identical to each other in a broad range of external currents. Simulations of the Villain model and the modified 2D XY model allowing stronger thermal vortex fluctuations are also performed with RSJ type of dynamics. The finite-size scaling suggested in Medvedyeva et al. [Phys. Rev. B 62, 14531(2000)] is confirmed for all dynamic models used, implying that this finite-size scaling behaviors in the vicinity of the Kosterlitz-Thouless transition are quite robust.Comment: 7 pages, 4 pictures, accepted in Physica

    Vortex-unbinding and finite-size effects in Tl2Ba2CaCu2O8 thin films

    Full text link
    Current-voltage (II-VV) characteristics of Tl2_2Ba2_2CaCu2_2O8_8 thin films in zero magnetic field are measured and analyzed with the conventional Kosterlitz-Thouless-Berezinskii (KTB) approach, dynamic scaling approach and finite-size scaling approach, respectively. It is found from these results that the II-VV relation is determined by the vortex-unbinding mechanism with the KTB dynamic critical exponent z=2z=2. On the other hand, the evidence of finite-size effect is also found, which blurs the feature of a phase transition.Comment: Typo corrected & reference adde

    Mutant MYO1F alters the mitochondrial network and induces tumor proliferation in thyroid cancer

    Get PDF
    Familial aggregation is a significant risk factor for the development of thyroid cancer and Familial Non-Medullary Thyroid Cancer (FNMTC) accounts for 5-7% of all NMTC. Whole Exome Sequencing analysis in the family affected by FNMTC with oncocytic features where our group previously identified a predisposing locus on chromosome 19p13.2, revealed a novel heterozygous mutation (c.400G>A, NM_012335; p.Gly134Ser) in exon 5 of MYO1F, mapping to the linkage locus. In the thyroid FRTL-5 cell model stably expressing the mutant MYO1F p.Gly134Ser protein we observed an altered mitochondrial network, with increased mitochondrial mass and a significant increase of both intracellular and extracellular Reactive Oxygen Species, compared to cells expressing the wild-type protein or carrying the empty vector. The mutation conferred a significant advantage in colony formation, invasion and anchorage independent growth. These data were corroborated by in vivo studies in zebrafish, since we demonstrated that the mutant MYO1F p.Gly134Ser, when overexpressed, can induce proliferation in whole vertebrate embryos, compared to the wild-type one. MYO1F screening in additional 192 FNMTC families identified another variant in exon 7, which leads to exon skipping, and is predicted to alter the ATP-binding domain in MYO1F. Our study identified for the first time a role for MYO1F in NMTC. This article is protected by copyright. All rights reserved

    Renormalization Group Study of the Intrinsic Finite Size Effect in 2D Superconductors

    Full text link
    Vortices in a thin-film superconductor interact logarithmically out to a distance on the order of the two-dimensional (2D) magnetic penetration depth λ\lambda_\perp, at which point the interaction approaches a constant. Thus, because of the finite λ\lambda_\perp, the system exhibits what amounts to an {\it intrinsic} finite size effect. It is not described by the 2D Coulomb gas but rather by the 2D Yukawa gas (2DYG). To study the critical behavior of the 2DYG, we map the 2DYG to the massive sine-Gordon model and then perform a renormalization group study to derive the recursion relations and to verify that λ\lambda_\perp is a relevant parameter. We solve the recursion relations to study important physical quantities for this system including the renormalized stiffness constant and the correlation length. We also address the effect of current on this system to explain why finite size effects are not more prevalent in experiments given that the 2D magnetic penetration depth is a relevant parameter.Comment: 8 pages inRevTex, 5 embedded EPS figure

    Temperature and Frequency Dependence of Complex Conductance of Ultrathin YBa2Cu3O7-x Films: A Study of Vortex-Antivortex Pair Unbinding

    Full text link
    We have studied the temperature dependencies of the complex sheet conductance of 1-3 unit cell (UC) thick YBa2Cu3O7-x films sandwiched between semiconducting Pr0.6Y0.4Ba2Cu3O7-x layers at high frequencies. Experiments have been carried out in a frequency range between: 2 - 30 MHz with one-spiral coil technique, 100 MHz - 1 GHz frequency range with a new technique using the spiral coil cavity and at 30 GHz by aid of a resonant cavity technique. The real and imaginary parts of the mutual-inductance between a coil and a film were measured and converted to complex conductivity by aid of the inversion procedure. We have found a quadratic temperature dependence of the kinetic inductance, L_k^-1(T), at low temperatures independent of frequency, with a break in slope at T^dc_BKT, the maximum of real part of conductance and a large shift of the break temperature and the maximum position to higher temperatures with increasing frequency. We obtain from these data the universal ratio T^dc_BKT/L_k^-1(T^dc_BKT) = 25, 25, and 17 nHK for 1-, 2- and 3UC films, respectively in close agreement with theoretical prediction of 12 nHK for vortex-antivortex unbinding transition. The activated temperature dependence of the vortex diffusion constant was observed and discussed in the framework of vortex-antivortex pair pinning. PACS numbers: 74.80.Dm, 74.25.Nf, 74.72.Bk, 74.76.BzComment: PDF file, 10 pages, 6 figures, to be published in J. Low Temp. Phys.; Proc. of NATO ARW: VORTEX 200

    Dynamic Impedance of Two-Dimensional Superconducting Films Near the Superconducting Transition

    Full text link
    The sheet impedances, Z(w,T), of several superconducting a-Mo77Ge23 films and one In/InOx film have been measured in zero field using a two-coil mutual inductance technique at frequencies from 100 Hz to 100 kHz. Z(w,T) is found to have three contributions: the inductive superfluid, renormalized by nonvortex phase fluctuations; conventional vortex-antivortex pairs, whose contribution turns on very rapidly just below the usual Kosterlitz-Thouless-Berezinskii unbinding temperature; and an anomalous contribution. The latter is predominantly resistive, persists well below the KTB temperature, and is weakly dependent on frequency down to remarkably low frequencies, at least 100 Hz. It increases with T as e-U'(T)/kT, where the activation energy, U'(T), is about half the energy to create a vortex-antivortex pair, indicating that the frequency dependence is that of individual excitations, rather than critical behavior.Comment: 10 pages, 10 figs; subm PR

    The Current-Temperature Phase Diagram of Layered Superconductors

    Full text link
    The behavior of clean layered superconductors in the presence of a finite electric current and in zero-magnetic field behavior is addressed. The structure of the current temperature phase diagram and the properties of each of the four regions will be explained. We will discuss the expected current voltage and resistance characteristics of each region as well as the effects of finite size and weak disorder on the phase diagram. In addition, the reason for which a weakly non-ohmic region exists above the transition temperature will be explained.Comment: 8 pages (RevTeX), 4 encapsulated postscript figure

    Is there a vortex-glass transition in high-temperature superconductors?

    Full text link
    We show that DC voltage versus current measurements of a YBCO micro-bridge in a magnetic field can be collapsed onto scaling functions proposed by Fisher, Fisher, and Huse, as is widely reported in the literature. We find, however, that good data collapse is achieved for a wide range of critical exponents and temperatures. These results strongly suggest that agreement with scaling alone does not prove the existence of a phase transition. We propose a criterion to determine if the data collapse is valid, and thus if a phase transition occurs. To our knowledge, none of the data reported in the literature meet our criterion.Comment: 4 pages, 4 figure
    corecore