1,358 research outputs found

    mCLCA3 Modulates IL-17 and CXCL-1 Induction and Leukocyte Recruitment in Murine Staphylococcus aureus Pneumonia

    Get PDF
    The human hCLCA1 and its murine ortholog mCLCA3 (calcium-activated chloride channel regulators) are exclusively expressed in mucus cells and linked to inflammatory airway diseases with increased mucus production, such as asthma, cystic fibrosis and chronic obstructive pulmonary disease. Both proteins have a known impact on the mucus cell metaplasia trait in these diseases. However, growing evidence points towards an additional role in innate immune responses. In the current study, we analyzed Staphylococcus aureus pneumonia, an established model to study pulmonary innate immunity, in mCLCA3-deficient and wild-type mice, focusing on the cellular and cytokine-driven innate inflammatory response. We compared clinical signs, bacterial clearance, leukocyte immigration and cytokine responses in the bronchoalveolar compartment, as well as pulmonary vascular permeability, histopathology, mucus cell number and mRNA expression levels of selected genes (mClca1 to 7, Muc5ac, Muc5b, Muc2, Cxcl-1, Cxcl-2, Il-17). Deficiency of mCLCA3 resulted in decreased neutrophilic infiltration into the bronchoalveolar space during bacterial infection. Only the cytokines IL-17 and the murine CXCL-8 homolog CXCL-1 were decreased on mRNA and protein levels during bacterial infection in mCLCA3-deficient mice compared to wild-type controls. However, no differences in clinical outcome, histopathology or mucus cell metaplasia were observed. We did not find evidence for regulation of any other CLCA homolog that would putatively compensate for the lack of mCLCA3. In conclusion, mCLCA3 appears to modulate leukocyte response via IL-17 and murine CXCL-8 homologs in acute Staphylococcus aureus pneumonia which is well in line with the proposed function of hCLCA1 as a signaling molecule acting on alveolar macrophages

    Tilting the lasso by knowledge-based post-processing

    Get PDF
    Background It is useful to incorporate biological knowledge on the role of genetic determinants in predicting an outcome. It is, however, not always feasible to fully elicit this information when the number of determinants is large. We present an approach to overcome this difficulty. First, using half of the available data, a shortlist of potentially interesting determinants are generated. Second, binary indications of biological importance are elicited for this much smaller number of determinants. Third, an analysis is carried out on this shortlist using the second half of the data. Results We show through simulations that, compared with adaptive lasso, this approach leads to models containing more biologically relevant variables, while the prediction mean squared error (PMSE) is comparable or even reduced. We also apply our approach to bone mineral density data, and again final models contain more biologically relevant variables and have reduced PMSEs. Conclusion Our method leads to comparable or improved predictive performance, and models with greater face validity and interpretability with feasible incorporation of biological knowledge into predictive models

    SOST/Sclerostin Improves Posttraumatic Osteoarthritis and Inhibits MMP2/3 Expression After Injury.

    Get PDF
    Patients with anterior cruciate ligament (ACL) rupture are two times as likely to develop posttraumatic osteoarthritis (PTOA). Annually, there are ∼900,000 knee injuries in the United States, which account for ∼12% of all osteoarthritis (OA) cases. PTOA leads to reduced physical activity, deconditioning of the musculoskeletal system, and in severe cases requires joint replacement to restore function. Therefore, treatments that would prevent cartilage degradation post-injury would provide attractive alternatives to surgery. Sclerostin (Sost), a Wnt antagonist and a potent negative regulator of bone formation, has recently been implicated in regulating chondrocyte function in OA. To determine whether elevated levels of Sost play a protective role in PTOA, we examined the progression of OA using a noninvasive tibial compression overload model in SOST transgenic (SOSTTG ) and knockout (Sost-/- ) mice. Here we report that SOSTTG mice develop moderate OA and display significantly less advanced PTOA phenotype at 16 weeks post-injury compared with wild-type (WT) controls and Sost-/- . In addition, SOSTTG built ∼50% and ∼65% less osteophyte volume than WT and Sost-/- , respectively. Quantification of metalloproteinase (MMP) activity showed that SOSTTG had ∼2-fold less MMP activation than WT or Sost-/- , and this was supported by a significant reduction in MMP2/3 protein levels, suggesting that elevated levels of SOST inhibit the activity of proteolytic enzymes known to degrade articular cartilage matrix. Furthermore, intra-articular administration of recombinant Sost protein, immediately post-injury, also significantly decreased MMP activity levels relative to PBS-treated controls, and Sost activation in response to injury was TNFα and NF-κB dependent. These results provide in vivo evidence that sclerostin functions as a protective molecule immediately after joint injury to prevent cartilage degradation. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc

    IT Management

    Get PDF
    Will there ever be a day IT personnel and Business persons get along? It is almost impossible to talk about information technology without discussion about IT management. Management will always be incorporated in our field because the projects and departments we work on and in are too big for one individual. As a result it takes a collective effort from a group of professionals to develop projects and maintain IT operations within companies. Companies are constantly striving to be the best whether in information technology or in business in general. The companies that are finding success are the ones hiring the personnel that best fit their company, instilling the best IT and business strategies, and continuing to search for the latest technologies and practices. The paper will identify and discuss the IT management and business strategies that companies are practicing today

    Fortschritte auf dem Gebiete der Chemie des Acetylens und Kohlenoxyds

    Get PDF

    Genetic polymorphism of miR-196a-2 is associated with bone mineral density (BMD)

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNA molecules that post-transcriptionally regulate the translation of messenger RNAs. Given the crucial role of miRNAs in gene expression, genetic variants within miRNA-related sequences may affect miRNA function and contribute to disease risk. Osteoporosis is characterized by reduced bone mass, and bone mineral density (BMD) is a major diagnostic proxy to assess osteoporosis risk. Here, we aimed to identify miRNAs that are involved in BMD using data from recent genome-wide association studies (GWAS) on femoral neck, lumbar spine and forearm BMD. Of 242 miRNA-variants available in the GWAS data, we found rs11614913:C > T in the precursor miR-196a-2 to be significantly associated with femoral neck-BMD (p-value = 9.9 × 10-7, β = −0.038) and lumbar spine-BMD (p-value = 3.2 × 10-11, β = −0.061). Furthermore, our sensitivity analyses using the Rotterdam study data showed a sex-specific association of rs11614913 with BMD only in women. Subsequently, we highlighted a number of miR-196a-2 target genes, expressed in bone and associated with BMD, that may mediate the miRNA function in BMD. Collectively, our results suggest that miR-196a-2 may contribute to variations in BMD level. Further biological investigations will give more insights into the mechanisms by which miR-196a-2 control expression of BMD-related genes

    Life-Cycle Energy, Costs, and Strategies for Improving a Single-Family House

    Full text link
    The life-cycle energy, greenhouse gas emissions, and costs of a contemporary 2,450 sq ft (228 m 3 ) U.S. residential home (the standard home, or SH) were evaluated to study opportunities for conserving energy throughout pre-use (materials production and construction), use (including maintenance and improvement), and demolition phases. Home construction and maintenance materials and appliances were inventoried totaling 306 metric tons. The use phase accounted for 91% of the total life-cycle energy consumption over a 50-year home life. A functionally equivalent energy-efficient house (EEH) was modeled that incorporated 11 energy efficiency strategies. These strategies led to a dramatic reduction in the EEH total life-cycle energy; 6,400 GJ for the EEH compared to 16,000 GJ for the SH. For energy-efficient homes, embodied energy of materials is important; pre-use energy accounted for 26% of life-cycle energy. The discounted (4%) life-cycle cost, consisting of mortgage, energy, maintenance, and improvement payments varied between 426,700 and 454,300 for a SH using four energy price forecast scenarios. In the case of the EEH, energy cost savings were offset by higher mortgage costs, resulting in total life-cycle cost between 434,100 and 443,200. Life-cycle greenhouse gas emissions were 1,010 metric tons CO 2 equivalent for an SH and 370 metric tons for an EEH.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75688/1/108819800569726.pd
    corecore