1,171 research outputs found

    A Mid-Infrared Imaging Survey of Embedded Young Stellar Objects in the Rho Ophiuchi Cloud Core

    Full text link
    Results of a comprehensive, new, ground-based mid-infrared imaging survey of the young stellar population of the Rho Ophiuchi cloud are presented. Data were acquired at the Palomar 5-m and at the Keck 10-m telescopes with the MIRLIN and LWS instruments, at 0.25 arcsec and 0.25 arcsec resolutions, respectively. Of 172 survey objects, 85 were detected. Among the 22 multiple systems observed, 15 were resolved and their individual component fluxes determined. A plot of the frequency distribution of the detected objects with SED spectral slope shows that YSOs spend ~400,000 yr in the Flat Spectrum phase, clearing out their remnant infall envelopes. Mid-infrared variability is found among a significant fraction of the surveyed objects, and is found to occur for all SED classes with optically thick disks. Large-amplitude near-infrared variability, also found for all SED classes with optically thick disks, seems to occur with somewhat higher frequency at the earlier evolutionary stages. Although a general trend of mid-infrared excess and NIR veiling exists proceeding through SED classes, with Class I objects generally exhibiting K-veilings > 1, Flat Spectrum objects with K-veilings > 0.58, and Class III objects with K-veilings =0, Class II objects exhibit the widest range of K-band veiling values, 0-4.5. However, the highly variable value of veiling that a single source can exhibit in any of the SED classes in which active disk accretion can take place is striking, and is direct observational evidence for highly time-variable accretion activity in disks. Finally, by comparing mid-infrared vs. near-infrared excesses in a subsample with well-determined effective temperatures and extinction values, disk clearing mechanisms are explored. The results are consistent with disk clearing proceeding from the inside-out.Comment: 18 pages + 5 tables + 7 figure

    Local tetragonal distortion in La_{0.7}Sr_{0.3}MnO_3 strained thin films probed by x-ray absorption spectroscopy

    Full text link
    We report on an angular resolved X-ray Absorption Spectroscopy study of La0.7Sr0.3MnO3La_{0.7}Sr_{0.3}MnO_{3} thin films epitaxially grown by pulsed laser deposition on slightly mismatched substrates which induce tensile or compressive strains. XANES spectra give evidence of tetragonal distortion within the MnO6MnO_{6} octahedra, with opposite directions for tensile and compressive strains. Quantitative analysis has been done and a model of tetragonal distortion reflecting the strain has been established. EXAFS data collected in plane for tensile substrate confirm the change in the MnOMn-O average bond distance and the increase of MnMnMn-Mn length matching with the enlargement of the cell parameter. From these results we conclude that there is no significant change in the MnOMnMn-O-Mn angle. Our observations conflict with the scenarios which this angle is the main driving parameter in the sensitivity of manganite films properties to external strains and suggest that the distortion within the octahedra plays a key role in the modification of the transport and magnetic properties.Comment: 8 pages, 6 figure

    High Resolution Infrared Imaging of the Compact Nuclear Source in NGC4258

    Get PDF
    We present high resolution imaging of the nucleus of NGC4258 from 1 micron to 18 microns. Our observations reveal that the previously discovered compact source of emission is unresolved even at the near-infrared resolution of about 0.2 arcsec FWHM which corresponds to about 7 pc at the distance of the galaxy. This is consistent with the source of emission being the region in the neighborhood of the purported 3.5*10^7 M_sun black hole. After correcting for about 18 mags of visual extinction, the infrared data are consistent with a F_nu \propto nu^(-1.4+/-0.1) spectrum from 1.1 micron to 18 micron, implying a non-thermal origin. Based on this spectrum, the total extinction corrected infrared luminosity (1-20 micron) of the central source is 2*10^8 L_sun. We argue that the infrared spectrum and luminosity of the central source obviates the need for a substantial contribution from a standard, thin accretion disk at these wavelengths and calculate the accretion rate through an advection dominated accretion flow to be Mdot \sim 10^(-3) M_sun/yr. The agreement between these observations and the theoretical spectral energy distribution for advection dominated flows provides evidence for the existence of an advection dominated flow in this low luminosity AGN.Comment: 21 pages, 5 figures, Appearing in Mar 2000 ApJ vol. 53

    Mid-Infrared Observations of Class I/Flat-Spectrum Systems in Six Nearby Molecular Clouds

    Get PDF
    We have obtained new mid-infrared observations of 65 Class I/Flat-Spectrum (F.S.) objects in the Perseus, Taurus, Chamaeleon I/II, Rho Ophiuchi, and Serpens dark clouds. We detected 45/48 (94%) of the single sources, 16/16 (100%) of the primary components, and 12/16 (75%) of the secondary/triple components of the binary/multiple objects surveyed. The composite spectral energy distributions (SEDs) for all of our sample sources are either Class I or F.S., and, in 15/16 multiple systems, at least one of the individual components displays a Class I or F.S. spectral index. However, the occurrence of mixed pairings, such as F.S. with Class I, F.S. with Class II, and, in one case, F.S. with Class III, is surprisingly frequent. Such behaviour is not consistent with that of multiple systems among T Tauri stars (TTS), where the companion of a classical TTS also tends to be a classical TTS, although other mixed pairings have been previously observed among Class II objects. Based on an analysis of the spectral indices of the individual binary components, there appears to be a higher proportion of mixed Class I/F.S. systems (65-80%) than that of mixed Classical/Weak-Lined TTS (25-40%), demonstrating that the envelopes of Class I/ F.S. systems are rapidly evolving during this evolutionary phase. We report the discovery of a steep spectral index secondary companion to ISO-ChaI 97, detected for the first time via our mid-infrared observations. In our previous near- infrared imaging survey of binary/multiple Class I/F.S. sources, ISO-ChaI 97 appeared to be single. With a spectral index of Alpha >= 3.9, the secondary component of this system is a member of a rare class of very steep spectral index objects, those with Alpha > 3. Only three such objects have previously been reported, all of which are either Class 0 or Class I.Comment: 31 pages, 4 figures, 6 table

    A Mid-Infrared Study of the Class 0 Cluster in LDN 1448

    Get PDF
    We present ground-based mid-infrared observations of Class 0 protostars in LDN 1448. Of the five known protostars in this cloud, we detected two, L1448N:A and L1448C, at 12.5, 17.9, 20.8, and 24.5 microns, and a third, L1448 IRS 2, at 24.5 microns. We present high-resolution images of the detected sources, and photometry or upper limits for all five Class 0 sources in this cloud. With these data, we are able to augment existing spectral energy distributions (SEDs) for all five objects and place them on an evolutionary status diagram.Comment: Accepted by the Astronomical Journal; 26 pages, 9 figure

    Radial Distribution of Dust Grains Around HR 4796A

    Get PDF
    We present high-dynamic-range images of circumstellar dust around HR 4796A that were obtained with MIRLIN at the Keck II telescope at lambda = 7.9, 10.3, 12.5 and 24.5 um. We also present a new continuum measurement at 350 um obtained at the Caltech Submillimeter Observatory. Emission is resolved in Keck images at 12.5 and 24.5 um with PSF FWHM's of 0.37" and 0.55", respectively, and confirms the presence of an outer ring centered at 70 AU. Unresolved excess infrared emission is also detected at the stellar position and must originate well within 13 AU of the star. A model of dust emission fit to flux densities at 12.5, 20.8, and 24.5 um indicates dust grains are located 4(+3/-2) AU from the star with effective size, 28+/-6 um, and an associated temperature of 260+/-40 K. We simulate all extant data with a simple model of exozodiacal dust and an outer exo-Kuiper ring. A two-component outer ring is necessary to fit both Keck thermal infrared and HST scattered-light images. Bayesian parameter estimates yield a total cross-sectional area of 0.055 AU^2 for grains roughly 4 AU from the star and an outer-dust disk composed of a narrow large-grain ring embedded within a wider ring of smaller grains. The narrow ring is 14+/-1 AU wide with inner radius 66+/-1 AU and total cross-sectional area 245 AU^2. The outer ring is 80+/-15 AU wide with inner radius 45+/-5 AU and total cross-sectional area 90 AU^2. Dust grains in the narrow ring are about 10 times larger and have lower albedos than those in the wider ring. These properties are consistent with a picture in which radiation pressure dominates the dispersal of an exo-Kuiper belt.Comment: Accepted by Astrophysical Journal (Part1) on September 9, 2004. 13 pages, 10 figures, 2 table

    High Resolution Mid-Infrared Imaging of Ultraluminous Infrared Galaxies

    Get PDF
    Observations of ultraluminous infrared galaxies (ULIRGs) with an achieved resolution approaching the diffraction limit in the mid-infrared from 8 - 25 μ\mum using the Keck Telescopes are reported. We find extremely compact structures, with spatial scales of <0.3< 0.3'' (diameter) in six of the seven ULIRGs observed. These compact sources emit between 30% and 100% of the mid-infrared energy from these galaxies. We have utilized the compact mid-infrared structures as a diagnostic of whether an AGN or a compact (100 -- 300 pc) starburst is the primary power source in these ULIRGs. In Markarian 231, the upper limit on the diameter of the 12.5 μ\mum source, 0.13'', shows that the size of the infrared source must increase with increasing wavelength, consistent with AGN models. In IRAS 05189-2524 and IRAS 08572+3915 there is strong evidence that the source size increases with increasing wavelength. This suggests heating by a central source rather than an extended luminosity source, consistent with the optical classification as an AGN. The compact mid-infrared sources seen in the other galaxies cannot be used to distinguish the ultimate luminosity source. If these ULIRGs are powered by compact starbursts, the star formation rates seen in the central few hundred parsecs far exceed the global rates seen in nearby starburst galaxies, and approach the surface brightness of individual clusters in nearby starburst galaxies.Comment: 33pages, 6 tables, 5 figures, Accepted for publication in A

    The Compact Nucleus of the Deep Silicate Absorption Galaxy NGC 4418

    Get PDF
    High resolution, Hubble Space Telescope (HST) near-infrared and Keck mid-infrared images of the heavily extinguished, infrared luminous galaxy NGC 4418 are presented. These data make it possible to observe the imbedded near-infrared structure on scales of 10-20 pc, and to constrain the size of the mid-infrared emitting region. The 1.1-2.2 um data of NGC 4418 show no clear evidence of nuclear star clusters or of a reddened active galactic nucleus. Instead, the nucleus of the galaxy consists of a ~100-200 pc linear structure with fainter structures extending radially outward. The near-infrared colors of the linear feature are consistent with a 10-300 Myr starburst suffering moderate levels (few magnitudes) of visual extinction. At 7.9-24.5 um, NGC 4418 has estimated size upper limits in the range of 30-80 pc. These dimensions are consistent with the highest resolution radio observations obtained to date of NGC 4418, as well as the size of 50-70 pc expected for a blackbody with a temperature derived from the 25 um, 60 um, and 100 um flux densities of the galaxy. Further, a spectral energy distribution constructed from the multi-wavelength mid-infrared observations show the strong silicate absorption feature at 10 um, consistent with previous mid-infrared observations of NGC 4418. An infrared surface brightness of 2.1x10^13 L_sun kpc^-2 is derived for NGC 4418. Such a value, though consistent with the surface brightness of warm ultraluminous infrared galaxies (ULIGs: L_IR [8-1000 um] >~ 10^12 L_sun) such as IRAS 05189-2524 and IRAS 08572+3915, is not large enough to distinguish NGC 4418 as a galaxy powered by an Active Galactic Nucleus (AGN), as opposed to a lower surface brightness starburst.Comment: LaTex, 7 pages, including 2 jpg figures and 3 postscript figures, AJ, in press (May, 2003

    A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells

    Get PDF
    We have manufactured more than 250 nominally identical paraffin-coated Cs vapor cells (30 mm diameter bulbs) for multi-channel atomic magnetometer applications. We describe our dedicated cell characterization apparatus. For each cell we have determined the intrinsic longitudinal, \sGamma{01}, and transverse, \sGamma{02}, relaxation rates. Our best cell shows \sGamma{01}/2\pi\approx 0.5 Hz, and \sGamma{02}/2\pi\approx 2 Hz. We find a strong correlation of both relaxation rates which we explain in terms of reservoir and spin exchange relaxation. For each cell we have determined the optimal combination of rf and laser powers which yield the highest sensitivity to magnetic field changes. Out of all produced cells, 90% are found to have magnetometric sensitivities in the range of 9 to 30 fTHz. Noise analysis shows that the magnetometers operated with such cells have a sensitivity close to the fundamental photon shot noise limit

    Lifetime of 19Ne*(4.03 MeV)

    Get PDF
    The Doppler-shift attenuation method was applied to measure the lifetime of the 4.03 MeV state in 19Ne. Utilizing a 3He-implanted Au foil as a target, the state was populated using the 20Ne(3He,alpha)19Ne reaction in inverse kinematics at a 20Ne beam energy of 34 MeV. De-excitation gamma rays were detected in coincidence with alpha particles. At the 1 sigma level, the lifetime was determined to be 11 +4, -3 fs and at the 95.45% confidence level the lifetime is 11 +8, -7 fs.Comment: 6 pages, submitted to Phys. Rev.
    corecore