9 research outputs found
Implementing new health interventions in developing countries: why do we lose a decade or more?
BACKGROUND: It is unclear how long it takes for health interventions to transition from research and development (R&D) to being used against diseases prevalent in resource-poor countries. We undertook an analysis of the time required to begin implementation of four vaccines and three malaria interventions. We evaluated five milestones for each intervention, and assessed if the milestones were associated with beginning implementation. METHODS: The authors screened WHO databases to determine the number of years between first regulatory approval of interventions, and countries beginning implementation. Descriptive analyses of temporal patterns and statistical analyses using logistic regression and Cox proportional hazard models were used to evaluate associations between five milestones and the beginning of implementation for each intervention. The milestones were: (A) presence of a coordinating group focused on the intervention; (B) availability of an intervention tailored to developing country health systems; (C) international financing commitment, and; (D) initial and (E) comprehensive WHO recommendations. Countries were categorized by World Bank income criteria. RESULTS: Five years after regulatory approval, no low-income countries (LICs) had begun implementing any of the vaccines, increasing to an average of only 4% of LICs after 10 years. Each malaria intervention was used by an average of 7% of LICs after five years and 37% after 10 years. Four of the interventions had similar implementation rates to HepB, while one was slower and one was faster than HepB. A financing commitment and initial WHO recommendation appeared to be temporally associated with the beginning of implementation. The initial recommendation from WHO was the only milestone associated in all statistical analyses with countries beginning implementation (relative rate = 1.97, P > 0.001). CONCLUSIONS: Although possible that four milestones were not associated with countries beginning implementation, we propose an alternative interpretation; that the milestones were not realized early enough in each intervention's development to shorten the time to beginning implementation. We discuss a framework built upon existing literature for consideration during the development of future interventions. Identifying critical milestones and their timing relative to R&D, promises to help new interventions realize their intended public health impact more rapidly
Can the Evidence Revolution and Multi‐Tiered Systems of Support Improve Education Equity and Reading Achievement?
Age-Based Programs for Vaccination against HPV
AbstractBackgroundThe risk of infection with human papillomavirus (HPV) increases with age. Answering the question of which age groups are appropriate to target for catch-up vaccination with the newly licensed quadrivalent HPV vaccine (types 6/11/16/18) will be important for developing vaccine policy recommendations.ObjectivesTo assess the value of varying female HPV vaccination strategies by specific age groups of a catch-up program in the United States.MethodsThe authors used previously published mathematical population dynamic model and cost-utility analysis to evaluate the public health impact and cost-effectiveness of alternative quadrivalent HPV (6/11/16/18) vaccination strategies. The model simulates heterosexual transmission of HPV infection and occurrence of cervical intraepithelial neoplasia (CIN), cervical cancer, and external genital warts in an age-structured population stratified by sex and sexual activity groups. The cost-utility analysis estimates the cost of vaccination, screening, diagnosis, and treatment of HPV diseases, and quality-adjusted survival.ResultsCompared with the current screening practices, vaccinating girls and women ages 12 to 24 years was the most effective strategy, reducing the number of HPV6/11/16/18-related genital warts, CIN grades 2 and 3, and cervical cancer cases among women in the next 25 years by 3,049,285, 1,399,935, and 30,021; respectively. The incremental cost-effectiveness ratio of this strategy when compared with vaccinating girls and women ages 12 to 19 years was $10,986 per quality-adjusted life-year gained.ConclusionRelative to other commonly accepted health-care programs, vaccinating girls and women ages 12 to 24 years appears cost-effective
