497 research outputs found

    An automatic system to discriminate malignant from benign massive lesions in mammograms

    Get PDF
    Evaluating the degree of malignancy of a massive lesion on the basis of the mere visual analysis of the mammogram is a non-trivial task. We developed a semi-automated system for massive-lesion characterization with the aim to support the radiological diagnosis. A dataset of 226 masses has been used in the present analysis. The system performances have been evaluated in terms of the area under the ROC curve, obtaining A_z=0.80+-0.04.Comment: 4 pages, 2 figure; Proceedings of the Frontier Science 2005, 4th International Conference on Frontier Science, 12-17 September, 2005, Milano, Ital

    An automated system for lung nodule detection in low-dose computed tomography

    Full text link
    A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 Italian project. One of the main goals of this project is to build a distributed database of lung CT scans in order to enable automated image analysis through a data and cpu GRID infrastructure. The basic modules of our lung-CAD system, a dot-enhancement filter for nodule candidate selection and a neural classifier for false-positive finding reduction, are described. The system was designed and tested for both internal and sub-pleural nodules. The results obtained on the collected database of low-dose thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.Comment: 9 pages, 9 figures; Proceedings of the SPIE Medical Imaging Conference, 17-22 February 2007, San Diego, California, USA, Vol. 6514, 65143

    A Fast General-Purpose Clustering Algorithm Based on FPGAs for High-Throughput Data Processing

    Full text link
    We present a fast general-purpose algorithm for high-throughput clustering of data "with a two dimensional organization". The algorithm is designed to be implemented with FPGAs or custom electronics. The key feature is a processing time that scales linearly with the amount of data to be processed. This means that clustering can be performed in pipeline with the readout, without suffering from combinatorial delays due to looping multiple times through all the data. This feature makes this algorithm especially well suited for problems where the data has high density, e.g. in the case of tracking devices working under high-luminosity condition such as those of LHC or Super-LHC. The algorithm is organized in two steps: the first step (core) clusters the data; the second step analyzes each cluster of data to extract the desired information. The current algorithm is developed as a clustering device for modern high-energy physics pixel detectors. However, the algorithm has much broader field of applications. In fact, its core does not specifically rely on the kind of data or detector it is working for, while the second step can and should be tailored for a given application. Applications can thus be foreseen to other detectors and other scientific fields ranging from HEP calorimeters to medical imaging. An additional advantage of this two steps approach is that the typical clustering related calculations (second step) are separated from the combinatorial complications of clustering. This separation simplifies the design of the second step and it enables it to perform sophisticated calculations achieving online-quality in online applications. The algorithm is general purpose in the sense that only minimal assumptions on the kind of clustering to be performed are made.Comment: 11th Frontier Detectors For Frontier Physics conference (2009

    Computer-aided detection of pulmonary nodules in low-dose CT

    Full text link
    A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector helical CT images with 1.25 mm slice thickness is being developed in the framework of the INFN-supported MAGIC-5 Italian project. The basic modules of our lung-CAD system, a dot enhancement filter for nodule candidate selection and a voxel-based neural classifier for false-positive finding reduction, are described. Preliminary results obtained on the so-far collected database of lung CT scans are discussed.Comment: 3 pages, 4 figures; Proceedings of the CompIMAGE - International Symposium on Computational Modelling of Objects Represented in Images: Fundamentals, Methods and Applications, 20-21 Oct. 2006, Coimbra, Portuga

    A Theoretical Prediction of the Bs-Meson Lifetime Difference

    Get PDF
    We present the results of a quenched lattice calculation of the operator matrix elements relevant for predicting the Bs width difference. Our main result is (\Delta\Gamma_Bs/\Gamma_Bs)= (4.7 +/- 1.5 +/- 1.6) 10^(-2), obtained from the ratio of matrix elements, R(m_b)=/<\bar B_s^0|Q_L|B_s^0>=-0.93(3)^(+0.00)_(-0.01). R(m_b) was evaluated from the two relevant B-parameters, B_S^{MSbar}(m_b)=0.86(2)^(+0.02)_(-0.03) and B_Bs^{MSbar}(m_b) = 0.91(3)^(+0.00)_(-0.06), which we computed in our simulation.Comment: 21 pages, 7 PostScript figure

    A scalable system for microcalcification cluster automated detection in a distributed mammographic database

    Get PDF
    A computer-aided detection (CADe) system for microcalcification cluster identification in mammograms has been developed in the framework of the EU-founded MammoGrid project. The CADe software is mainly based on wavelet transforms and artificial neural networks. It is able to identify microcalcifications in different datasets of mammograms (i.e. acquired with different machines and settings, digitized with different pitch and bit depth or direct digital ones). The CADe can be remotely run from GRID-connected acquisition and annotation stations, supporting clinicians from geographically distant locations in the interpretation of mammographic data. We report and discuss the system performances on different datasets of mammograms and the status of the GRID-enabled CADe analysis.Comment: 6 pages, 4 figures; Proceedings of the IEEE NNS and MIC Conference, October 23-29, 2005, Puerto Ric

    GPCALMA: a Grid Approach to Mammographic Screening

    Get PDF
    The next generation of High Energy Physics experiments requires a GRID approach to a distributed computing system and the associated data management: the key concept is the "Virtual Organisation" (VO), a group of geographycally distributed users with a common goal and the will to share their resources. A similar approach is being applied to a group of Hospitals which joined the GPCALMA project (Grid Platform for Computer Assisted Library for MAmmography), which will allow common screening programs for early diagnosis of breast and, in the future, lung cancer. HEP techniques come into play in writing the application code, which makes use of neural networks for the image analysis and shows performances similar to radiologists in the diagnosis. GRID technologies will allow remote image analysis and interactive online diagnosis, with a relevant reduction of the delays presently associated to screening programs.Comment: 4 pages, 3 figures; to appear in the Proceedings of Frontier Detectors For Frontier Physics, 9th Pisa Meeting on Advanced Detectors, 25-31 May 2003, La Biodola, Isola d'Elba, Ital

    A scalable Computer-Aided Detection system for microcalcification cluster identification in a pan-European distributed database of mammograms

    Full text link
    A computer-aided detection (CADe) system for microcalcification cluster identification in mammograms has been developed in the framework of the EU-founded MammoGrid project. The CADe software is mainly based on wavelet transforms and artificial neural networks. It is able to identify microcalcifications in different kinds of mammograms (i.e. acquired with different machines and settings, digitized with different pitch and bit depth or direct digital ones). The CADe can be remotely run from GRID-connected acquisition and annotation stations, supporting clinicians from geographically distant locations in the interpretation of mammographic data. We report the FROC analyses of the CADe system performances on three different dataset of mammograms, i.e. images of the CALMA INFN-founded database collected in the Italian National screening program, the MIAS database and the so-far collected MammoGrid images. The sensitivity values of 88% at a rate of 2.15 false positive findings per image (FP/im), 88% with 2.18 FP/im and 87% with 5.7 FP/im have been obtained on the CALMA, MIAS and MammoGrid database respectively.Comment: 6 pages, 5 figures; Proceedings of the ITBS 2005, 3rd International Conference on Imaging Technologies in Biomedical Sciences, 25-28 September 2005, Milos Island, Greec

    Inter-method reliability of brainstem volume segmentation algorithms in preschoolers with ASD

    Get PDF
    Introduction: The brainstem has a potential role in the pathophysiology of Autism Spectrum Disorders (ASD) (Roger, 2013). In particular, alterations in brainstem volume and their relationship with sensory/motor abnormalities have been suggested (Trevarthen & Delafield-Butt, 2013). However, the findings in volume alterations of subjects with ASD with respect to matched controls are controversial both in adults and children cohorts (Hardan, 2001; Piven, 1992; Kleiman, 1992). Moreover, the contribution to variability of brainstem volume measurements performed with different automated methods is still unclear. Methods: T1-weighted MRI brain scans of a cohort of 80 preschoolers (20 male controls, 20 male subjects with ASD, 20 female controls, 20 female subjects with ASD, mean age controls 49 months, std 12 months, mean age ASD 49 months, std 14) were processed with three different automated methods to measure the brainstem volume: Freesurfer 5.3 (Fischl, 2002), FSL-FIRST (Patenaude, 2011) and ANTs (Avants, 2011). Analysis of variance was then carried out taking into account gender and total brain volume in order to investigate potential brainstem volume differences between controls/ASD subjects for each method. A direct comparison of brainstem volume assessments in native space was then performed to assess inter-method reliability (correlation has been calculated by Pearson coefficient) and Dice similarity indexes were calculated to evaluate the segmentation agreement across methods. Results:The brainstem volume measurements are reported in scatter plots in Fig. 1 to show the agreement in terms of volume (in mm3) between different methods. The color represents the Dice similarity index (range 0-1 were 1 means total agreement) of the brainstem segmentations obtained by the methods under investigation. In Fig. 2 four examples of brainstem segmentations with the different methods are shown in sagittal view (brainstem segmentations are reported in red, green, blue for Freesurfer, FSL-FIRST and ANTs respectively). Pearson correlation coefficient between FSL-FIRST and Freesurfer brainstem volume assessments was 0.27 (p-value=0.02). It was 0.51 (p-value0.05).Conclusions:The inter-method reliability of automated algorithms for brainstem volume assessment is limited (the mean Dice similarity index barely reaches 0.8 in just one out of 3 comparisons). Inconsistencies across previous studies on brainstem and more in general the lack of evidence for brain biomarkers in ASD may in part be a result of this poor agreements in the extraction of structural features with different methods. Inter-method brainstem volume differences can be attributed to varying definitions of brainstem structure, the use of different templates (e.g. in our study only ANTs processed the brain scans by using an age-specific brain template) and the varying effects of imaging artifacts and acquisition settings. This study suggests that research on brain structure alterations should cross-validate findings across multiple methods before providing biological interpretations
    corecore