444 research outputs found

    On the Newtonian Limit of General Relativity

    Get PDF
    We find a choice of variables for the 3+1 formulation of general relativity which casts the evolution equations into (flux-conservative) symmetric-hyperbolic first order form for arbitrary lapse and shift, for the first time. We redefine the lapse function in terms of the determinant of the 3-metric and a free function U which embodies the lapse freedom. By rescaling the variables with appropriate factors of 1/c, the system is shown to have a smooth Newtonian limit when the redefined lapse U and the shift are fixed by means of elliptic equations to be satisfied on each time slice. We give a prescription for the choice of appropriate initial data with controlled extra-radiation content, based on the theory of problems with different time-scales. Our results are local, in the sense that we are not concerned with the treatment of asymptotic regions. On the other hand, this local theory is all what is needed for most problems of practical numerical computation.Comment: 16 pages, uses REVTe

    Fast and Slow solutions in General Relativity: The Initialization Procedure

    Get PDF
    We apply recent results in the theory of PDE, specifically in problems with two different time scales, on Einstein's equations near their Newtonian limit. The results imply a justification to Postnewtonian approximations when initialization procedures to different orders are made on the initial data. We determine up to what order initialization is needed in order to detect the contribution to the quadrupole moment due to the slow motion of a massive body as distinct from initial data contributions to fast solutions and prove that such initialization is compatible with the constraint equations. Using the results mentioned the first Postnewtonian equations and their solutions in terms of Green functions are presented in order to indicate how to proceed in calculations with this approach.Comment: 14 pages, Late

    On Existence of Static Metric Extensions in General Relativity

    Full text link
    Motivated by problems related to quasi-local mass in general relativity, we study the static metric extension conjecture proposed by R. Bartnik \cite{Bartnik_energy}. We show that, for any metric on Bˉ1\bar{B}_1 that is close enough to the Euclidean metric and has reflection invariant boundary data, there always exists an asymptotically flat and scalar flat {\em static} metric extension in M=R3B1M = \R^3 \setminus B_1 such that it satisfies Bartnik's geometric boundary condition \cite{Bartnik_energy} on B1\partial B_1.Comment: 20 page

    Einstein's Equations with Asymptotically Stable Constraint Propagation

    Get PDF
    We introduce a proposal to modify Einstein's equations by embedding them in a larger symmetric hyperbolic system. The additional dynamical variables of the modified system are essentially first integrals of the original constraints. The extended system of equations reproduces the usual dynamics on the constraint surface of general relativity, and therefore naturally includes the solutions to Einstein gravity. The main feature of this extended system is that, at least for a linearized version of it, the constraint surface is an attractor of the time evolution. This feature suggests that this system may be a useful alternative to Einstein's equations when obtaining numerical solutions to full, non-linear gravity.Comment: 23 pages, submitted to JMP, added reference for section
    corecore