547 research outputs found
Samengevoegde afwikkeling van faillissementen
Samengevoegde afwikkeling
Aan het Nederlandse ondernemingsrecht ligt van oorsprong de gedachte ten grondslag dat een onderneming wordt gedreven door één natuurlijke persoon of vennootschap. In de praktijk blijkt dit echter heel vaak niet het geval te zijn en wordt een onderneming gedreven door een groep vennootschappen oftewel een concern. Daarbij draagt iedere vennootschap zorg voor een bepaalde ondernemingsactiviteit.
In artikel 2:24b Burgerlijk Wetboek (BW) is het begrip ‘groep’
aldus gedefinieerd: ‘Een groep is een economische eenheid waarin rechtspersonen en vennootschappen organisatorisch zijn verbonden.’
De genoemde organisatorische verbondenheid impliceert hier het bestaan van centrale leiding. Er moet daadwerkelijk centrale leiding zijn uitgeoefend waardoor de vennootschappen een economische eenheid zijn gaan vormen. De mate van centrale leiding verschilt daarbij per concern en kan soms zelfs binnen een concern verschillen per vennootschap. De centrale leiding kan gebaseerd zijn op
kapitaaldeelname door de ene vennootschap in de andere, op een tussen hen gesloten overeenkomst of op feitelijke verbondenheid zoals instelling van personele unies, waarbij dezelfde personen zitting hebben in de besturen van de verschillende vennootschappen. De wettelijke invulling van het groepsbegrip wordt geacht niet wezenlijk te verschillen van de daaraan in het juridische spraakgebruik
gegeven betekenis. Evenmin verschilt die invulling van de in de doctrine
ontwikkelde invulling van het begrip groep of concern
Modelling Route Choice Decisions of Car Travellers Using Combined GPS and Diary Data
The aim of this research is to identify the relationship between activity patterns and route choice decisions. The focus is twofold: on the one hand, the relationship between the purpose of a trip and the road categories used for the relocation is investigated; on the other hand, the relationship between the purpose of a trip and the deviation from the shortest path is studied. The data for this study were collected in 2006 and 2007 in Flanders, the Dutch speaking and northern part of Belgium. To estimate the relationship between the primary road category travelled on and the corresponding activity-travel behaviour a multinomial logit model is developed. To estimate the relationship between the deviation from the shortest path and the corresponding activity-travel behaviour a Tobit model is developed. The results of the first model point out that route choice is a function of multiple factors, not just travel time or distance. Crucial for modelling route choices or in general for traffic assignment procedures is the conclusion that activity patterns have a clear influence on the road category primarily driven on. Particularly, it was shown that the likelihood of taking primarily through roads is highest for work trips and lowest for leisure trips. The second model shows a significant relationship between the deviation from the shortest path and the purpose of the trip. Furthermore, next to trip-related attributes (trip distance), also socio-demographic variables and geographical differences play an important role. These results certainly suggest that traffic assignment procedures should be developed that explicitly take into account an activity-based segmentation. In addition, it was shown that route choices were similar during peak and off-peak periods. This is an indication that car drivers are not necessarily utility maximizers, or that classical utility functions in the context of route choices are omitting important explanatory variables
QQ-SNV: single nucleotide variant detection at low frequency by comparing the quality quantiles
Background: Next generation sequencing enables studying heterogeneous populations of viral infections. When the sequencing is done at high coverage depth ("deep sequencing"), low frequency variants can be detected. Here we present QQ-SNV (http://sourceforge.net/projects/qqsnv), a logistic regression classifier model developed for the Illumina sequencing platforms that uses the quantiles of the quality scores, to distinguish true single nucleotide variants from sequencing errors based on the estimated SNV probability. To train the model, we created a dataset of an in silico mixture of five HIV-1 plasmids. Testing of our method in comparison to the existing methods LoFreq, ShoRAH, and V-Phaser 2 was performed on two HIV and four HCV plasmid mixture datasets and one influenza H1N1 clinical dataset.
Results: For default application of QQ-SNV, variants were called using a SNV probability cutoff of 0.5 (QQ-SNVD). To improve the sensitivity we used a SNV probability cutoff of 0.0001 (QQ-SNVHS). To also increase specificity, SNVs called were overruled when their frequency was below the 80th percentile calculated on the distribution of error frequencies (QQ-SNVHS-P80). When comparing QQ-SNV versus the other methods on the plasmid mixture test sets, QQ-SNVD performed similarly to the existing approaches. QQ-SNVHS was more sensitive on all test sets but with more false positives. QQ-SNVHS-P80 was found to be the most accurate method over all test sets by balancing sensitivity and specificity. When applied to a paired-end HCV sequencing study, with lowest spiked-in true frequency of 0.5 %, QQ-SNVHS-P80 revealed a sensitivity of 100 % (vs. 40-60 % for the existing methods) and a specificity of 100 % (vs. 98.0-99.7 % for the existing methods). In addition, QQ-SNV required the least overall computation time to process the test sets. Finally, when testing on a clinical sample, four putative true variants with frequency below 0.5 % were consistently detected by QQ-SNVHS-P80 from different generations of Illumina sequencers.
Conclusions: We developed and successfully evaluated a novel method, called QQ-SNV, for highly efficient single nucleotide variant calling on Illumina deep sequencing virology data
Halvade: scalable sequence analysis with MapReduce
Motivation: Post-sequencing DNA analysis typically consists of read mapping followed by variant calling. Especially for whole genome sequencing, this computational step is very time-consuming, even when using multithreading on a multi-core machine.
Results: We present Halvade, a framework that enables sequencing pipelines to be executed in parallel on a multi-node and/or multi-core compute infrastructure in a highly efficient manner. As an example, a DNA sequencing analysis pipeline for variant calling has been implemented according to the GATK Best Practices recommendations, supporting both whole genome and whole exome sequencing. Using a 15-node computer cluster with 360 CPU cores in total, Halvade processes the NA12878 dataset (human, 100 bp paired-end reads, 50x coverage) in <3 h with very high parallel efficiency. Even on a single, multi-core machine, Halvade attains a significant speedup compared with running the individual tools with multithreading.
Availability and implementation: Halvade is written in Java and uses the Hadoop MapReduce 2.0 API. It supports a wide range of distributions of Hadoop, including Cloudera and Amazon EMR
Re-sourcing the Tapijn Barracks:transforming military exercise hangar into contemporary university kitchen garden
ViVaMBC: estimating viral sequence variation in complex populations from illumina deep-sequencing data using model-based clustering
Background: Deep-sequencing allows for an in-depth characterization of sequence variation in complex populations. However, technology associated errors may impede a powerful assessment of low-frequency mutations. Fortunately, base calls are complemented with quality scores which are derived from a quadruplet of intensities, one channel for each nucleotide type for Illumina sequencing. The highest intensity of the four channels determines the base that is called. Mismatch bases can often be corrected by the second best base, i.e. the base with the second highest intensity in the quadruplet. A virus variant model-based clustering method, ViVaMBC, is presented that explores quality scores and second best base calls for identifying and quantifying viral variants. ViVaMBC is optimized to call variants at the codon level (nucleotide triplets) which enables immediate biological interpretation of the variants with respect to their antiviral drug responses.
Results: Using mixtures of HCV plasmids we show that our method accurately estimates frequencies down to 0.5%. The estimates are unbiased when average coverages of 25,000 are reached. A comparison with the SNP-callers V-Phaser2, ShoRAH, and LoFreq shows that ViVaMBC has a superb sensitivity and specificity for variants with frequencies above 0.4%. Unlike the competitors, ViVaMBC reports a higher number of false-positive findings with frequencies below 0.4% which might partially originate from picking up artificial variants introduced by errors in the sample and library preparation step.
Conclusions: ViVaMBC is the first method to call viral variants directly at the codon level. The strength of the approach lies in modeling the error probabilities based on the quality scores. Although the use of second best base calls appeared very promising in our data exploration phase, their utility was limited. They provided a slight increase in sensitivity, which however does not warrant the additional computational cost of running the offline base caller. Apparently a lot of information is already contained in the quality scores enabling the model based clustering procedure to adjust the majority of the sequencing errors. Overall the sensitivity of ViVaMBC is such that technical constraints like PCR errors start to form the bottleneck for low frequency variant detection
Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations
The HEK293 human cell lineage is widely used in cell biology and biotechnology. Here we use whole-genome resequencing of six 293 cell lines to study the dynamics of this aneuploid genome in response to the manipulations used to generate common 293 cell derivatives, such as transformation and stable clone generation (293T); suspension growth adaptation (293S); and cytotoxic lectin selection (293SG). Remarkably, we observe that copy number alteration detection could identify the genomic region that enabled cell survival under selective conditions (i.c. ricin selection). Furthermore, we present methods to detect human/vector genome breakpoints and a user-friendly visualization tool for the 293 genome data. We also establish that the genome structure composition is in steady state for most of these cell lines when standard cell culturing conditions are used. This resource enables novel and more informed studies with 293 cells, and we will distribute the sequenced cell lines to this effect
Using structural bioinformatics to investigate the impact of non synonymous SNPs and disease mutations: scope and limitations
BACKGROUND: Linking structural effects of mutations to functional outcomes is a major issue in structural bioinformatics, and many tools and studies have shown that specific structural properties such as stability and residue burial can be used to distinguish neutral variations and disease associated mutations. RESULTS: We have investigated 39 structural properties on a set of SNPs and disease mutations from the Uniprot Knowledge Base that could be mapped on high quality crystal structures and show that none of these properties can be used as a sole classification criterion to separate the two data sets. Furthermore, we have reviewed the annotation process from mutation to result and identified the liabilities in each step. CONCLUSION: Although excellent annotation results of various research groups underline the great potential of using structural bioinformatics to investigate the mechanisms underlying disease, the interpretation of such annotations cannot always be extrapolated to proteome wide variation studies. Difficulties for large-scale studies can be found both on the technical level, i.e. the scarcity of data and the incompleteness of the structural tool suites, and on the conceptual level, i.e. the correct interpretation of the results in a cellular context.status: publishe
Joint annotation of coding and non-coding single nucleotide polymorphisms and mutations in the SNPeffect and PupaSuite databases
Single nucleotide polymorphisms (SNPs) are, together with copy number variation, the primary source of variation in the human genome. SNPs are associated with altered response to drug treatment, susceptibility to disease and other phenotypic variation. Furthermore, during genetic screens for disease-associated mutations in groups of patients and control individuals, the distinction between disease causing mutation and polymorphism is often unclear. Annotation of the functional and structural implications of single nucleotide changes thus provides valuable information to interpret and guide experiments. The SNPeffect and PupaSuite databases are now synchronized to deliver annotations for both non-coding and coding SNP, as well as annotations for the SwissProt set of human disease mutations. In addition, SNPeffect now contains predictions of Tango2: an improved aggregation detector, and Waltz: a novel predictor of amyloid-forming sequences, as well as improved predictors for regions that are recognized by the Hsp70 family of chaperones. The new PupaSuite version incorporates predictions for SNPs in silencers and miRNAs including their targets, as well as additional methods for predicting SNPs in TFBSs and splice sites. Also predictions for mouse and rat genomes have been added. In addition, a PupaSuite web service has been developed to enable data access, programmatically. The combined database holds annotations for 4 965 073 regulatory as well as 133 505 coding human SNPs and 14 935 disease mutations, and phenotypic descriptions of 43 797 human proteins and is accessible via http://snpeffect.vib.be and http://pupasuite.bioinfo.cipf.es/
- …
