9,206 research outputs found
Renormalization of the Topological Charge in Yang-Mills Theory
The conditions leading to a nontrivial renormalization of the topological
charge in four--dimensional Yang--Mills theory are discussed. It is shown that
if the topological term is regarded as the limit of a certain nontopological
interaction, quantum effects due to the gauge bosons lead to a finite
multiplicative renormalization of the theta--parameter while fermions give rise
to an additional shift of theta. A truncated form of an exact renormalization
group equation is used to study the scale dependence of the theta--parameter.
Possible implications for the strong CP--problem of QCD are discussed.Comment: 31 pages, late
Ionic conductivity and relaxation dynamics in plastic-crystals with nearly globular molecules
We have performed a dielectric investigation of the ionic charge transport
and the relaxation dynamics in plastic-crystalline 1-cyano-adamantane (CNA) and
in two mixtures of CNA with the related plastic crystals adamantane or
2-adamantanon. Ionic charge carriers were provided by adding 1% of Li salt. The
molecules of these compounds have nearly globular shape and, thus, the
so-called revolving-door mechanism assumed to promote ionic charge transport
via molecular reorientations in other PC electrolytes, should not be active
here. Indeed, a comparison of the dc resistivity and the reorientational
alpha-relaxation times in the investigated PCs, reveals complete decoupling of
both dynamics. Similar to other PCs, we find a significant mixing-induced
enhancement of the ionic conductivity. Finally, these solid-state electrolytes
reveal a second relaxation process, slower than the alpha-relaxation, which is
related to ionic hopping. Due to the mentioned decoupling, it can be
unequivocally detected and is not superimposed by the reorientational
contributions as found for most other ionic conductors.Comment: 9 pages, 7 figure
First-principles kinetic Monte Carlo simulations for heterogeneous catalysis, applied to the CO oxidation at RuO2(110)
We describe a first-principles statistical mechanics approach enabling us to
simulate the steady-state situation of heterogeneous catalysis. In a first step
density-functional theory together with transition-state theory is employed to
obtain the energetics of all relevant elementary processes. Subsequently the
statistical mechanics problem is solved by the kinetic Monte Carlo method,
which fully accounts for the correlations, fluctuations, and spatial
distributions of the chemicals at the surface of the catalyst under
steady-state conditions. Applying this approach to the catalytic oxidation of
CO at RuO2(110), we determine the surface atomic structure and composition in
reactive environments ranging from ultra-high vacuum (UHV) to technologically
relevant conditions, i.e. up to pressures of several atmospheres and elevated
temperatures. We also compute the CO2 formation rates (turnover frequencies).
The results are in quantitative agreement with all existing experimental data.
We find that the high catalytic activity of this system is intimately connected
with a disordered, dynamic surface ``phase'' with significant compositional
fluctuations. In this active state the catalytic function results from a
self-regulating interplay of several elementary processes.Comment: 18 pages including 9 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.htm
Running Gauge Coupling in Asymptotically Safe Quantum Gravity
We investigate the non-perturbative renormalization group behavior of the
gauge coupling constant using a truncated form of the functional flow equation
for the effective average action of the Yang-Mills-gravity system. We find a
non-zero quantum gravity correction to the standard Yang-Mills beta function
which has the same sign as the gauge boson contribution. Our results fit into
the picture according to which Quantum Einstein Gravity (QEG) is asymptotically
safe, with a vanishing gauge coupling constant at the non-trivial fixed point.Comment: 27 page
Renormalization Group Flow of Quantum Gravity in the Einstein-Hilbert Truncation
The exact renormalization group equation for pure quantum gravity is used to
derive the non-perturbative \Fbeta-functions for the dimensionless Newton
constant and cosmological constant on the theory space spanned by the
Einstein-Hilbert truncation. The resulting coupled differential equations are
evaluated for a sharp cutoff function. The features of these flow equations are
compared to those found when using a smooth cutoff. The system of equations
with sharp cutoff is then solved numerically, deriving the complete
renormalization group flow of the Einstein-Hilbert truncation in . The
resulting renormalization group trajectories are classified and their physical
relevance is discussed. The non-trivial fixed point which, if present in the
exact theory, might render Quantum Einstein Gravity nonperturbatively
renormalizable is investigated for various spacetime dimensionalities.Comment: 58 pages, latex, 24 figure
Effect of surface nanostructure on temperature programmed reaction spectroscopy: First-principles kinetic Monte Carlo simulations of CO oxidation at RuO2(110)
Using the catalytic CO oxidation at RuO2(110) as a showcase, we employ
first-principles kinetic Monte Carlo simulations to illustrate the intricate
effects on temperature programmed reaction spectroscopy data brought about by
the mere correlations between the locations of the active sites at a
nanostructured surface. Even in the absence of lateral interactions, this
nanostructure alone can cause inhomogeneities that cannot be grasped by
prevalent mean-field data analysis procedures, which thus lead to wrong
conclusions on the reactivity of the different surface species.Comment: 4 pages including 3 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.htm
Electrical read-out of the local nuclear polarization in the quantum Hall effect
It is demonstrated that the now well-established `flip-flop' mechanism of
spin exchange between electrons and nuclei in the quantum Hall effect can be
reversed. We use a sample geometry which utilizes separately contacted edge
states to establish a local nuclear spin polarization --close to the maximum
value achievable-- by driving a current between electron states of different
spin orientation. When the externally applied current is switched off, the
sample exhibits an output voltage of up to a few tenths of a meV, which decays
with a time constant typical for the nuclear spin relaxation. The surprizing
fact that a sample with a local nuclear spin polarization can act as a source
of energy and that this energy is well above the nuclear Zeeman splitting is
explained by a simple model which takes into account the effect of a local
Overhauser shift on the edge state reconstruction.Comment: Submitted to Phys. Rev. Let
Renormalization group improved gravitational actions: a Brans-Dicke approach
A new framework for exploiting information about the renormalization group
(RG) behavior of gravity in a dynamical context is discussed. The
Einstein-Hilbert action is RG-improved by replacing Newton's constant and the
cosmological constant by scalar functions in the corresponding Lagrangian
density. The position dependence of and is governed by a RG
equation together with an appropriate identification of RG scales with points
in spacetime. The dynamics of the fields and does not admit a
Lagrangian description in general. Within the Lagrangian formalism for the
gravitational field they have the status of externally prescribed
``background'' fields. The metric satisfies an effective Einstein equation
similar to that of Brans-Dicke theory. Its consistency imposes severe
constraints on allowed backgrounds. In the new RG-framework, and
carry energy and momentum. It is tested in the setting of homogeneous-isotropic
cosmology and is compared to alternative approaches where the fields and
do not carry gravitating 4-momentum. The fixed point regime of the
underlying RG flow is studied in detail.Comment: LaTeX, 72 pages, no figure
Waveform sampling using an adiabatically driven electron ratchet in a two-dimensional electron system
We utilize a time-periodic ratchet-like potential modulation imposed onto a
two-dimensional electron system inside a GaAs/AlGaAs
heterostructure to evoke a net dc pumping current. The modulation is induced by
two sets of interdigitated gates, interlacing off center, which can be
independently addressed. When the transducers are driven by two identical but
phase-shifted ac signals, a lateral dc pumping current results, which
strongly depends on both, the phase shift and the waveform of the
imposed gate voltages. We find that for different periodic signals, the phase
dependence closely resembles . A simple linear model of
adiabatic pumping in two-dimensional electron systems is presented, which
reproduces well our experimental findings.Comment: 3 figure
- …
