1,257 research outputs found
Ligand-induced closure of inward rectifier Kir6.2 channels traps spermine in the pore
Small organic amines block open voltage-gated K(+) channels and can be trapped by subsequent closure. Such studies provide strong evidence for voltage gating occurring at the intracellular end of the channel. We engineered the necessary properties (long block times with unblock kinetics comparable to, or slower than, the kinetics of gating) into spermine-blocked, ATP-gated (N160D,L157C) mutant K(ATP) channels, in order to test the possibility of “blocker trapping” in ligand-gated Kir channels. Spermine block of these channels is very strongly voltage dependent, such that, at positive voltages, the off-rate of spermine is very low. A brief pulse to negative voltages rapidly relieves the block, but no such relief is observed in ATP-closed channels. The results are well fit by a simple kinetic model that assumes no spermine exit from closed channels. The results incontrovertibly demonstrate that spermine is trapped in channels that are closed by ATP, and implicate the M2 helix bundle crossing, or somewhere lower, as the probable location of the gate
Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period
The modeling study presented here aims to estimate
how uncertainties in global hydroxyl radical (OH) distributions, variability, and trends may contribute to resolving discrepancies between simulated and observed methane (CH4) changes since 2000. A multi-model ensemble of 14 OH fields was analyzed and aggregated into 64 scenarios
to force the offline atmospheric chemistry transport model
LMDz (Laboratoire de Meteorologie Dynamique) with a
standard CH4 emission scenario over the period 2000–2016.
The multi-model simulated global volume-weighted tropospheric mean OH concentration ([OH]) averaged over 2000–2010 ranges between 8:7*10^5 and 12:8*10^5 molec cm-3.
The inter-model differences in tropospheric OH burden and
vertical distributions are mainly determined by the differences in the nitrogen oxide (NO) distributions, while the spatial discrepancies between OH fields are mostly due to differences in natural emissions and volatile organic compound (VOC) chemistry. From 2000 to 2010, most simulated OH fields show an increase of 0.1–0:3*10^5 molec cm-3 in the tropospheric mean [OH], with year-to-year variations much smaller than during the historical period 1960–2000. Once
ingested into the LMDz model, these OH changes translated
into a 5 to 15 ppbv reduction in the CH4 mixing ratio
in 2010, which represents 7%–20% of the model-simulated
CH4 increase due to surface emissions. Between 2010 and
2016, the ensemble of simulations showed that OH changes
could lead to a CH4 mixing ratio uncertainty of > 30 ppbv.
Over the full 2000–2016 time period, using a common stateof-
the-art but nonoptimized emission scenario, the impact
of [OH] changes tested here can explain up to 54% of the
gap between model simulations and observations. This result
emphasizes the importance of better representing OH abundance and variations in CH4 forward simulations and emission optimizations performed by atmospheric inversions
Sustainable urban biophilia: The case of greenskins for urban density
Green infrastructure ameliorates the urban heat island effect, contributes positively to liveability and enables sustainability in higher density urban environments. Greenskins (living architectures) are a more specific form of green infrastructure, including green walls and green roofs, for dense urban areas. These offer a new approach for sustainable urban biophilia and some forms can be built using the ecological design principles of constructed wetlands. The paper compares findings from two urban centres in warm Mediterranean climates. In general from Adelaide, South Australia and more specifically from university collaborative projects on particular technical and social parameters necessary to sustain Greenskins in dense urban conditions in Fremantle, Western Australia. Results from trials of a prototype greywater Greenskin using vertical constructed wetland cells are reported. Through an experimental investigation of designing living green walls in urban Fremantle, this paper challenges the conventional "triple-bottom-line" approach to sustainable dense urban systems by addressing the greater aesthetic needs of sustainability and its thinking. Here landscape aesthetics looks to the collaborative fields of urban design, environmental engineering and landscape architecture to design new urban biophilic experiences and restorative landscapes for regenerative cultural pleasure, ecological responsibility, environmental stewardship and intellectual gain
Acute effects of nicotine on visual search tasks in young adult smokers
Rationale Nicotine is known to improve performance on tests involving sustained attention and recent research suggests that nicotine may also improve performance on tests involving the strategic allocation of attention and working memory. Objectives We used measures of accuracy and response latency combined with eye-tracking techniques to examine the effects of nicotine on visual search tasks. Methods In experiment 1 smokers and non-smokers performed pop-out and serial search tasks. In experiment 2, we used a within-subject design and a more demanding search task for multiple targets. In both studies, 2-h abstinent smokers were asked to smoke one of their own cigarettes between baseline and tests. Results In experiment 1, pop-out search times were faster after nicotine, without a loss in accuracy. Similar effects were observed for serial searches, but these were significant only at a trend level. In experiment 2, nicotine facilitated a strategic change in eye movements resulting in a higher proportion of fixations on target letters. If the cigarette was smoked on the first trial (when the task was novel), nicotine additionally reduced the total number of fixations and refixations on all letters in the display. Conclusions Nicotine improves visual search performance by speeding up search time and enabling a better focus of attention on task relevant items. This appears to reflect more efficient inhibition of eye movements towards task irrelevant stimuli, and better active maintenance of task goals. When the task is novel, and therefore more difficult, nicotine lessens the need to refixate previously seen letters, suggesting an improvement in working memory
Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations
Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1) will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1
Recommended from our members
The PELskin project: part IV—control of bluff body wakes using hairy filaments
The passive control of bluff body wakes using a sparse layer of elastic hairy filaments has been investigated via a series of numerical simulations and compared to selected experiments under well-controlled boundary conditions. It has been found that a distribution of filaments spaced half of the dominant three dimensional instability and resonating with the main shedding frequency can drastically delay the three dimensional transition of the wake behind a circular cylinder. It will also be shown that when using a pair of rows of filaments symmetrically spaced by an azimuthal angle, the wake topology can be deeply affected as well as the value of the integral force coefficients of the cylinder. In the most favourable case, a coupled three dimensional transition delay and strongly reduced values of the drag and of the lift fluctuation can be simultaneously achieved. These results hold also for higher Reynolds-number flows as shown in experiments on a cylinder with hairy flaps attached to the aft part. The lock-in effect of structural vibration of the flaps with the vortex shedding is assumed to be the reason for a sudden change in the shedding cycle as soon as the motion amplitude is high enough to modify the wake. In line with this hypothesis, it has been demonstrated that a long elastic filament pinned on the centerline of a forced spatially developing mixing layer can interact with the vortex dynamics delaying the pairing process-leading to a reduced thickness of the layer. These findings show that a properly designed fluid structure interaction can indeed lead to technological benefits in terms of wake control: drag reduction, vibration control and possibly palliation of aeroacoustic emissions
Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models
The Southern Hemisphere (SH) zonal-mean circulation change in response to Antarctic ozone depletion is re-visited by examining a set of the latest model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project. All models reasonably well reproduce Antarctic ozone depletion in the late 20th century. The related SH-summer circulation changes, such as a poleward intensification of westerly jet and a poleward expansion of the Hadley cell, are also well captured. All experiments exhibit quantitatively the same multi-model mean trend, irrespective of whether the ocean is coupled or prescribed. Results are also quantitatively similar to those derived from the Coupled Model Intercomparison Project phase 5 (CMIP5) high-top model simulations in which the stratospheric ozone is mostly prescribed with monthly- and zonally-averaged values. These results suggest that the ozone-hole-induced SH-summer circulation changes are robust across the models irrespective of the specific chemistry-atmosphere-ocean coupling
Unexpectedly rapid evolution of mandibular shape in hominins
Members of the hominins – namely the so-called ‘australopiths’ and the species of the genus Homo – are known to possess short and deep mandibles and relatively small incisors and canines. It is commonly assumed that this suite of traits evolved in early members of the clade in response to changing environmental conditions and increased consumption of though food items. With the emergence of Homo, the functional meaning of mandible shape variation is thought to have been weakened by technological advancements and (later) by the control over fire. In contrast to this expectation, we found that mandible shape evolution in hominins is exceptionally rapid as compared to any other primate clade, and that the direction and rate of shape change (from the ape ancestor) are no different between the australopiths and Homo. We deem several factors including the loss of honing complex, canine reduction, and the acquisition of different diets may have concurred in producing such surprisingly high evolutionary rates. This study reveals the evolution of mandibular shape in hominins has strong morpho-functional and ecological significance attached
Experimental signature of the attractive Coulomb force between positive and negative magnetic monopoles in spin ice
A non-Ohmic current that grows exponentially with the square root of applied electric field is well known from thermionic field emission (the Schottky effect)1, electrolytes (the second Wien effect)2 and semiconductors (the Poole–Frenkel effect)3. It is a universal signature of the attractive Coulomb force between positive and negative electrical charges, which is revealed as the charges are driven in opposite directions by the force of an applied electric field. Here we apply thermal quenches4 to spin ice5,6,7,8,9,10,11 to prepare metastable populations of bound pairs of positive and negative emergent magnetic monopoles12,13,14,15,16 at millikelvin temperatures. We find that the application of a magnetic field results in a universal exponential-root field growth of magnetic current, thus confirming the microscopic Coulomb force between the magnetic monopole quasiparticles and establishing a magnetic analogue of the Poole–Frenkel effect. At temperatures above 300 mK, gradual restoration of kinetic monopole equilibria causes the non-Ohmic current to smoothly evolve into the high-field Wien effect2 for magnetic monopoles, as confirmed by comparison to a recent and rigorous theory of the Wien effect in spin ice17,18. Our results extend the universality of the exponential-root field form into magnetism and illustrate the power of emergent particle kinetics to describe far-from-equilibrium response in complex systems
Semi-supervised segmentation of ultrasound images based on patch representation and continuous min cut.
Ultrasound segmentation is a challenging problem due to the inherent speckle and some artifacts like shadows, attenuation and signal dropout. Existing methods need to include strong priors like shape priors or analytical intensity models to succeed in the segmentation. However, such priors tend to limit these methods to a specific target or imaging settings, and they are not always applicable to pathological cases. This work introduces a semi-supervised segmentation framework for ultrasound imaging that alleviates the limitation of fully automatic segmentation, that is, it is applicable to any kind of target and imaging settings. Our methodology uses a graph of image patches to represent the ultrasound image and user-assisted initialization with labels, which acts as soft priors. The segmentation problem is formulated as a continuous minimum cut problem and solved with an efficient optimization algorithm. We validate our segmentation framework on clinical ultrasound imaging (prostate, fetus, and tumors of the liver and eye). We obtain high similarity agreement with the ground truth provided by medical expert delineations in all applications (94% DICE values in average) and the proposed algorithm performs favorably with the literature
- …
