640 research outputs found

    Duality violations and spectral sum rules

    Full text link
    We study the issue of duality violations in the VV-AA vacuum polarization function in the chiral limit. This is done with the help of a model with an expansion in inverse powers of the number of colors, Nc, allowing us to consider resonances with a finite width. Due to these duality violations, the Operator Product Expansion (OPE) and the moments of the spectral function (e.g. the Weinberg sum rules) do not match at finite momentum, and we analyze this difference in detail. We also perform a comparative study of many of the different methods proposed in the literature for the extraction of the OPE parameters and find that, when applied to our model, they all fare quite similarly. In fact, the model strongly suggests that a significant improvement in precision can only be expected after duality violations are included. To this end, we propose a method to parameterize these duality violations. The method works quite well for the model, and we hope that it may also be useful in future determinations of OPE parameters in QCD.Comment: 29 pages, 9 figures, LateX file. Small changes to match journal versio

    Rationale for UV-filtered clover fermions

    Full text link
    We study the contributions Sigma_0 and Sigma_1, proportional to a^0 and a^1, to the fermion self-energy in Wilson's formulation of lattice QCD with UV-filtering in the fermion action. We derive results for m_{crit} and the renormalization factors Z_S, Z_P, Z_V, Z_A to 1-loop order in perturbation theory for several filtering recipes (APE, HYP, EXP, HEX), both with and without a clover term. The perturbative series is much better behaved with filtering, in particular tadpole resummation proves irrelevant. Our non-perturbative data for m_{crit} and Z_A/(Z_m*Z_P) show that the combination of filtering and clover improvement efficiently reduces the amount of chiral symmetry breaking -- we find residual masses am_{res}=O(10^{-2}).Comment: 25 pages, 4 figures; v2: typo in eqn. (37) fixed [agrees with published version

    John G. Sommer. Empowering the Oppressed: Grassroots Advocacy Movements in India. New Delhi: Sage Publications, 2001. 207 pages. Paperback. Price not given.

    Get PDF
    Advocacy movements all over the world have been quite instrumental in bringing about social change. The efforts of groups involved in such movements are directed towards realising the core human values of justice and equality by securing the human and civil rights of the poor, oppressed, and marginalised sections of society. Lately, many groups have realised that merely obliterating the effects of oppression, discrimination, and injustice is not enough—these efforts must be supplemented by attempts to address their root causes as well. Only by doing so, the constructive changes occurring in society owing to the struggle of these movements can become sustainable

    A dynamical gluon mass solution in a coupled system of the Schwinger-Dyson equations

    Full text link
    We study numerically the Schwinger-Dyson equations for the coupled system of gluon and ghost propagators in the Landau gauge and in the case of pure gauge QCD. We show that a dynamical mass for the gluon propagator arises as a solution while the ghost propagator develops an enhanced behavior in the infrared regime of QCD. Simple analytical expressions are proposed for the propagators, and the mass dependency on the ΛQCD\Lambda_{QCD} scale and its perturbative scaling are studied. We discuss the implications of our results for the infrared behavior of the coupling constant, which, according to fits for the propagators infrared behavior, seems to indicate that αs(q2)0\alpha_s (q^2) \to 0 as q20q^2 \to 0.Comment: 17 pages, 7 figures - Revised version to be consistent with erratum to appear in JHE

    Quantum States of Topologically Massive Electrodynamics and Gravity

    Get PDF
    The free quantum states of topologically massive electrodynamics and gravity in 2+1 dimensions, are explicitly found. It is shown that in both theories the states are described by infrared-regular polarization tensors containing a regularization phase which depends on the spin. This is done by explicitly realizing the quantum algebra on a functional Hilbert space and by finding the Wightman function to define the scalar product on such a Hilbert space. The physical properties of the states are analyzed defining creation and annihilation operators. For both theories, a canonical and covariant quantization procedure is developed. The higher order derivatives in the gravitational lagrangian are treated by means of a preliminary Dirac procedure. The closure of the Poincar\'e algebra is guaranteed by the infrared-finiteness of the states which is related to the spin of the excitations through the regularization phase. Such a phase may have interesting physical consequences.Comment: 21 page, latex, no figure

    Monte Carlo Exploration of Warped Higgsless Models

    Full text link
    We have performed a detailed Monte Carlo exploration of the parameter space for a warped Higgsless model of electroweak symmetry breaking in 5 dimensions. This model is based on the SU(2)L×SU(2)R×U(1)BLSU(2)_L\times SU(2)_R\times U(1)_{B-L} gauge group in an AdS5_5 bulk with arbitrary gauge kinetic terms on both the Planck and TeV branes. Constraints arising from precision electroweak measurements and collider data are found to be relatively easy to satisfy. We show, however, that the additional requirement of perturbative unitarity up to the cut-off, 10\simeq 10 TeV, in WL+WLW_L^+W_L^- elastic scattering in the absence of dangerous tachyons eliminates all models. If successful models of this class exist, they must be highly fine-tuned.Comment: 26 pages, 7 figures; new fig and additional text adde

    SUSY Resonances from UHE neutralinos in Neutrino Telescopes and in the Sky

    Full text link
    In the Top-down scenarios, the decay of super-heavy particles (m~10^{12-16}GeV), situated in dark-matter halos not very far from our Galaxy, can explain the ultra-high-energy (UHE) cosmic-ray spectrum beyond the Griesen-Zatasepin-Kuzmin cut-off. In the MSSM, a major component of the UHE cosmic-ray flux at PeV-EeV energies could be given by the lightest neutralino \chi, that is the lightest stable supersymmetric particle. Then, the signal of UHE \chi's on earth might emerge over the interactions of a comparable neutrino component. We compute the event rates for the resonant production of "right" selectrons and "right" squarks in mSUGRA, when UHE neutralinos of energy larger than 10^5 GeV scatter off electrons and quarks in an earth-based detector like IceCube. When the resonant channel dominates in the total \chi-e,\chi-q scattering cross section, the only model parameters affecting the corresponding visible signal rates turn out to be the physical masses of the resonant right-scalar and of the lightest neutralino. We compare the expected number of supersymmetric events with the rates corresponding to the expected Glashow W resonance and to the continuum UHE \nu-N scattering for realistic power-law spectra. We find that the event rate in the leptonic selectron channel is particularly promising, and can reach a few tens for a one-year exposure in IceCube. Finally, we note that UHE neutralinos at much higher energies (up to hundreds ZeV) may produce sneutrino resonances by scattering off relic neutrinos in the Local Group hot dark halo. The consequent \tilde{\nu}-burst into hadronic final states could mimic Z-burst events, although with quite smaller conversion efficiency.Comment: 23 pages, 4 figures; one reference adde

    Ciprian Pripoae-Șerbănescu, Subconștient, comunicare, sens (Subconscious, communication, meaning), TopForm, Bucharest, 2018, 95 p.

    Get PDF
    The volume Subconscious, communication, meaning, published in 2018, by TopForm Publishing House, within the Psychology collection, represents a real contribution in the field of intelligence studies. The author Ciprian Pripoae-Șerbănescu successfully summarizes the concerns in the field of psychology, critical thinking and intelligence, with an emphasis on the persuasive role of communication. After all, the paper can be a starting point for future research, especially due to the interdisciplinary perspective

    Linear Collider Capabilities for Supersymmetry in Dark Matter Allowed Regions of the mSUGRA Model

    Full text link
    Recent comparisons of minimal supergravity (mSUGRA) model predictions with WMAP measurements of the neutralino relic density point to preferred regions of model parameter space. We investigate the reach of linear colliders (LC) with s=0.5\sqrt{s}=0.5 and 1 TeV for SUSY in the framework of the mSUGRA model. We find that LCs can cover the entire stau co-annihilation region provided \tan\beta \alt 30. In the hyperbolic branch/focus point (HB/FP) region of parameter space, specialized cuts are suggested to increase the reach in this important ``dark matter allowed'' area. In the case of the HB/FP region, the reach of a LC extends well past the reach of the CERN LHC. We examine a case study in the HB/FP region, and show that the MSSM parameters μ\mu and M2M_2 can be sufficiently well-measured to demonstrate that one would indeed be in the HB/FP region, where the lightest chargino and neutralino have a substantial higgsino component.Comment: 29 pages, 15 EPS figures; updated version slightly modified to conform with published versio

    Reach of the Fermilab Tevatron for minimal supergravity in the region of large scalar masses

    Full text link
    The reach of the Fermilab Tevatron for supersymmetric matter has been calculated in the framework of the minimal supergravity model in the clean trilepton channel. Previous analyses of this channel were restricted to scalar masses m_0<= 1 TeV. We extend the analysis to large values of scalar masses m_0\sim 3.5 TeV. This includes the compelling hyperbolic branch/focus point (HB/FP) region, where the superpotential \mu parameter becomes small. In this region, assuming a 5\sigma (3\sigma) signal with 10 (25) fb^{-1} of integrated luminosity, the Tevatron reach in the trilepton channel extends up to m_{1/2}\sim 190 (270) GeV independent of \tan\beta . This corresponds to a reach in terms of the gluino mass of m_{\tg}\sim 575 (750) GeV.Comment: 11 page latex file including 6 EPS figures; several typos corrected and references adde
    corecore