2,076 research outputs found

    Mean ergodic theorems on norming dual pairs

    Full text link
    We extend the classical mean ergodic theorem to the setting of norming dual pairs. It turns out that, in general, not all equivalences from the Banach space setting remain valid in our situation. However, for Markovian semigroups on the norming dual pair (C_b(E), M(E)) all classical equivalences hold true under an additional assumption which is slightly weaker than the e-property.Comment: 18 pages, 1 figur

    Perturbation of strong Feller semigroups and well-posedness of semilinear stochastic equations on Banach spaces

    Full text link
    We prove a Miyadera-Voigt type perturbation theorem for strong Feller semigroups. Using this result, we prove well-posedness of the semilinear stochastic equation dX(t) = [AX(t) + F(X(t))]dt + GdW_H(t) on a separable Banach space E, assuming that F is bounded and measurable and that the associated linear equation, i.e. the equation with F = 0, is well-posed and its transition semigroup is strongly Feller and satisfies an appropriate gradient estimate. We also study existence and uniqueness of invariant measures for the associated transition semigroup.Comment: Revision based on the referee's comment

    Motion in a Random Force Field

    Full text link
    We consider the motion of a particle in a random isotropic force field. Assuming that the force field arises from a Poisson field in Rd\mathbb{R}^d, d4d \geq 4, and the initial velocity of the particle is sufficiently large, we describe the asymptotic behavior of the particle

    Local time and Tanaka formula for G-Brownian Motion

    Full text link
    In this paper, we study the notion of local time and Tanaka formula for the G-Brownian motion. Moreover, the joint continuity of the local time of the G-Brownian motion is obtained and its quadratic variation is proven. As an application, we generalize It^o's formula with respect to the G-Brownian motion to convex functions.Comment: 29 pages, "Finance and Insurance-Stochastic Analysis and Practical Methods", Jena, March 06,200

    Area limit laws for symmetry classes of staircase polygons

    Full text link
    We derive area limit laws for the various symmetry classes of staircase polygons on the square lattice, in a uniform ensemble where, for fixed perimeter, each polygon occurs with the same probability. This complements a previous study by Leroux and Rassart, where explicit expressions for the area and perimeter generating functions of these classes have been derived.Comment: 18 pages, 3 figure

    Area Distribution of Elastic Brownian Motion

    Full text link
    We calculate the excursion and meander area distributions of the elastic Brownian motion by using the self adjoint extension of the Hamiltonian of the free quantum particle on the half line. We also give some comments on the area of the Brownian motion bridge on the real line with the origin removed. We will stress on the power of self adjoint extension to investigate different possible boundary conditions for the stochastic processes.Comment: 18 pages, published versio

    Fractional Fokker-Planck Equations for Subdiffusion with Space-and-Time-Dependent Forces

    Get PDF
    We have derived a fractional Fokker-Planck equation for subdiffusion in a general space-and- time-dependent force field from power law waiting time continuous time random walks biased by Boltzmann weights. The governing equation is derived from a generalized master equation and is shown to be equivalent to a subordinated stochastic Langevin equation.Comment: 5 page

    The role of the agent's outside options in principal-agent relationships

    Get PDF
    We consider a principal-agent model of adverse selection where, in order to trade with the principal, the agent must undertake a relationship-specific investment which affects his outside option to trade, i.e. the payoff that he can obtain by trading with an alternative principal. This creates a distinction between the agent’s ex ante (before investment) and ex post (after investment) outside options to trade. We investigate the consequences of this distinction, and show that whenever an agent’s ex ante and ex post outside options differ, this may equip the principal with an additional tool for screening among different agent types, by randomizing over the probability with which trade occurs once the agent has undertaken the investment. In turn, this may enhance the efficiency of the optimal second-best contract

    On Singular Control Problems with State Constraints and Regime-Switching: A Viscosity Solution Approach

    Full text link
    This paper investigates a singular stochastic control problem for a multi-dimensional regime-switching diffusion process confined in an unbounded domain. The objective is to maximize the total expected discounted rewards from exerting the singular control. Such a formulation stems from application areas such as optimal harvesting multiple species and optimal dividends payments schemes in random environments. With the aid of weak dynamic programming principle and an exponential transformation, we characterize the value function to be the unique constrained viscosity solution of a certain system of coupled nonlinear quasi-variational inequalities. Several examples are analyzed in details to demonstrate the main results
    corecore