5,488 research outputs found
Interference effects during burning in air for stationary n-heptane, ethyl alcohol, and methyl alcohol droplets
Experiments have been conducted for the determination
of the evaporation constant and flame shapes of two and
of five closely spaced droplets burning in air. Droplets of
approximately the same and of different diameters were
used at various distances between the droplet centers.
The apparent flame shape, which was observed only for n-heptane droplets, changes very little during burning.
The square of the droplet diameter decreases linearly with
time for fixed spacing between droplet centers, at least
within the experimental limits of accuracy. In general,
the average evaporation constant for two droplets, K',
must be assumed either to vary continuously during burning
or else to be a function of average initial drop diameter,
D^0. The change of K' with time corresponds to the second
derivative in plots of the square of the diameter vs. time.
These second derivatives are not defined in our work because
of unavoidable scatter of the experimental data. Attempts at understanding the observed results by considering
published theories for single droplets, as well as groupings obtained from dimensional analysis, have been
unsuccessful. It appears that the diffusion model for
the heterogeneous burning of single fuel droplets will require serious revision and extension before the burning of
droplets arrays and sprays can be understood quantitatively.
Furthermore, the effective value of K' for a spray
probably depends not only on the fuel-oxidizer system but
also on the injection pattern. For this reason additional
studies had best be carried out under conditions corresponding to those existing in service models
Space acceleration measurement system triaxial sensor head error budget
The objective of the Space Acceleration Measurement System (SAMS) is to measure and record the microgravity environment for a given experiment aboard the Space Shuttle. To accomplish this, SAMS uses remote triaxial sensor heads (TSH) that can be mounted directly on or near an experiment. The errors of the TSH are reduced by calibrating it before and after each flight. The associated error budget for the calibration procedure is discussed here
Eighty years of food-web response to interannual variation in discharge recorded in river diatom frustules from an ocean sediment core.
Little is known about the importance of food-web processes as controls of river primary production due to the paucity of both long-term studies and of depositional environments which would allow retrospective fossil analysis. To investigate how freshwater algal production in the Eel River, northern California, varied over eight decades, we quantified siliceous shells (frustules) of freshwater diatoms from a well-dated undisturbed sediment core in a nearshore marine environment. Abundances of freshwater diatom frustules exported to Eel Canyon sediment from 1988 to 2001 were positively correlated with annual biomass of Cladophora surveyed over these years in upper portions of the Eel basin. Over 28 years of contemporary field research, peak algal biomass was generally higher in summers following bankfull, bed-scouring winter floods. Field surveys and experiments suggested that bed-mobilizing floods scour away overwintering grazers, releasing algae from spring and early summer grazing. During wet years, growth conditions for algae could also be enhanced by increased nutrient loading from the watershed, or by sustained summer base flows. Total annual rainfall and frustule densities in laminae over a longer 83-year record were weakly and negatively correlated, however, suggesting that positive effects of floods on annual algal production were primarily mediated by "top-down" (consumer release) rather than "bottom-up" (growth promoting) controls
Endocuff Vision Reduces Inspection Time Without Decreasing Lesion Detection in a Randomized Colonoscopy Trial
Background & Aims
Mucosal exposure devices improve detection of lesions during colonoscopy and have reduced examination times in uncontrolled studies. We performed a randomized trial of Endocuff Vision vs standard colonoscopy to compare differences in withdrawal time (the primary end point). We proposed that Endocuff Vision would allow complete mucosal inspection in a shorter time without impairing lesion detection.
Methods
Adults older than 40 years undergoing screening or surveillance colonoscopies were randomly assigned to the Endocuff group (n=101, 43.6% women) or the standard colonoscopy group (n=99; 57.6% women). One of 2 experienced endoscopists performed the colonoscopies, aiming for a thorough evaluation of the proximal sides of all haustral folds, flexures, and valves in the shortest time possible. Inspection time was measured with a stopwatch and calculated by subtracting washing, suctioning, polypectomy and biopsy times from total withdrawal time.
Results
There were significantly fewer women in the Endocuff arm (P = .0475) but there were no other demographic differences between groups. Mean insertion time with Endocuff was 4.0 min vs 4.4 min for standard colonoscopy (P = .14). Mean inspection time with Endocuff was 6.5 min vs 8.4 min for standard colonoscopy (P < .0001). Numbers of adenomas detected per colonoscopy (1.43 vs 1.07; P = .07), adenoma detection rate (61.4% vs 52%; P = .21), number of sessile serrated polyps per colonoscopy (0.27 vs 0.21; P = .12), and sessile serrated polyp detection rate (19.8% vs 11.1%; P = .09) were all higher with Endocuff Vision. Results did not differ significantly when we controlled for age, sex, or race.
Conclusion
In a randomized trial, we found inclusion of Endocuff in screening or surveillance colonoscopies to decrease examination time without reducing lesion detection
Forages for cattle : new methods of determining energy content and evaluating heat damage (1993)
The crude fiber method of feed analysis has been used for more than 100 years. Although this method was an important first attempt at determining the energy content of feeds, it has a number of shortcomings. A new analytical approach for estimating energy content of forages was developed by Van Soest in the 1960s at the USDA Beltsville Nutritional Research Facility. These detergent fiber analyses give more accurate estimates of forage energy values and now are used for forage analysis.Reviewed October 1993 -- Extension website
- …
