1,941 research outputs found
Casimir torque between nanostructured plates
We investigate in detail the Casimir torque induced by quantum vacuum
fluctuations between two nanostructured plates. Our calculations are based on
the scattering approach and take into account the coupling between different
modes induced by the shape of the surface which are neglected in any sort of
proximity approximation or effective medium approach. We then present an
experimental setup aiming at measuring this torque.Comment: 7 pages, 7 figure
Thermal Casimir Effect in the Plane-Sphere Geometry
The thermal Casimir force between two metallic plates is known to depend on
the description of material properties. For large separations the dissipative
Drude model leads to a force a factor of 2 smaller than the lossless plasma
model. Here we show that the plane-sphere geometry, in which current experiment
are performed, decreases this ratio to a factor of 3/2, as revealed by exact
numerical and large distance analytical calculations. For perfect reflectors,
we find a repulsive contribution of thermal photons to the force and negative
entropy values at intermediate distances.Comment: 4 pages, 3 figure
Orbital frustration at the origin of the magnetic behavior in LiNiO2
We report on the ESR, magnetization and magnetic susceptibility measurements
performed over a large temperature range, from 1.5 to 750 K, on high-quality
stoichiometric LiNiO2. We find that this compound displays two distinct
temperature regions where its magnetic behavior is anomalous. With the help of
a statistical model based on the Kugel'-Khomskii Hamiltonian, we show that
below T_of ~ 400 K, an orbitally-frustrated state characteristic of the
triangular lattice is established. This then gives a solution to the
long-standing controversial problem of the magnetic behavior in LiNiO2.Comment: 5 pages, 5 figures, RevTex, accepted in PR
Casimir energies with finite-width mirrors
We use a functional approach to the Casimir effect in order to evaluate the
exact vacuum energy for a real scalar field in dimensions, in the
presence of backgrounds that, in a particular limit, impose Dirichlet boundary
conditions on one or two parallel surfaces. Outside of that limit, the
background may be thought of as describing finite-width mirrors with
frequency-dependent transmission and reflection coefficients. We provide new
explicit results for the Casimir energy in some particular backgroundsComment: 18 pages, no figures. Version to appear in Phys. Rev.
Casimir torque between corrugated metallic plates
We consider two parallel corrugated plates and show that a Casimir torque
arises when the corrugation directions are not aligned. We follow the
scattering approach and calculate the Casimir energy up to second order in the
corrugation amplitudes, taking into account nonspecular reflections,
polarization mixing and the finite conductivity of the metals. We compare our
results with the proximity force approximation, which overestimates the torque
by a factor 2 when taking the conditions that optimize the effect. We argue
that the Casimir torque could be measured for separation distances as large as
1 Comment: 7 pages, 3 figures, contribution to QFEXT07 proceeding
Twin polaritons in semiconductor microcavities
The quantum correlations between the beams generated by polariton pair
scattering in a semiconductor microcavity above the parametric oscillation
threshold are computed analytically. The influence of various parameters like
the cavity-exciton detuning, the intensity mismatch between the signal and
idler beams and the amount of spurious noise is analyzed. We show that very
strong quantum correlations between the signal and idler polaritons can be
achieved. The quantum effects on the outgoing light fields are strongly reduced
due to the large mismatch in the coupling of the signal and idler polaritons to
the external photons
Casimir interaction between plane and spherical metallic surfaces
We give an exact series expansion of the Casimir force between plane and
spherical metallic surfaces in the non trivial situation where the sphere
radius , the plane-sphere distance and the plasma wavelength
have arbitrary relative values. We then present numerical
evaluation of this expansion for not too small values of . For metallic
nanospheres where and have comparable values, we interpret
our results in terms of a correlation between the effects of geometry beyond
the proximity force approximation (PFA) and of finite reflectivity due to
material properties. We also discuss the interest of our results for the
current Casimir experiments performed with spheres of large radius .Comment: 4 pages, new presentation (highlighting the novelty of the results)
and added references. To appear in Physical Review Letter
Quantum interference of ultrastable twin optical beams
We report the first measurement of the quantum phase-difference noise of an
ultrastable nondegenerate optical parametric oscillator that emits twin beams
classically phase-locked at exact frequency degeneracy. The measurement
illustrates the property of a lossless balanced beam-splitter to convert
number-difference squeezing into phase-difference squeezing and, thus, provides
indirect evidence for Heisenberg-limited interferometry using twin beams. This
experiment is a generalization of the Hong-Ou-Mandel interference effect for
continuous variables and constitutes a milestone towards continuous-variable
entanglement of bright, ultrastable nondegenerate beams.Comment: 4 pages, 4 figs, accepted by Phys. Rev. Let
The proximity force approximation for the Casimir energy as a derivative expansion
The proximity force approximation (PFA) has been widely used as a tool to
evaluate the Casimir force between smooth objects at small distances. In spite
of being intuitively easy to grasp, it is generally believed to be an
uncontrolled approximation. Indeed, its validity has only been tested in
particular examples, by confronting its predictions with the next to leading
order (NTLO) correction extracted from numerical or analytical solutions
obtained without using the PFA. In this article we show that the PFA and its
NTLO correction may be derived within a single framework, as the first two
terms in a derivative expansion. To that effect, we consider the Casimir energy
for a vacuum scalar field with Dirichlet conditions on a smooth curved surface
described by a function in front of a plane. By regarding the Casimir
energy as a functional of , we show that the PFA is the leading term in a
derivative expansion of this functional. We also obtain the general form of
corresponding NTLO correction, which involves two derivatives of . We
show, by evaluating this correction term for particular geometries, that it
properly reproduces the known corrections to PFA obtained from exact
evaluations of the energy.Comment: Minor changes. Version to appear in Phys. Rev.
Conditional preparation of a quantum state in the continuous variable regime: generation of a sub-Poissonian state from twin beams
We report the first experimental demonstration of conditional preparation of
a non classical state of light in the continuous variable regime. Starting from
a non degenerate OPO which generates above threshold quantum intensity
correlated signal and idler "twin beams", we keep the recorded values of the
signal intensity only when the idler falls inside a band of values narrower
than its standard deviation. By this very simple technique, we generate a
sub-Poissonian state 4.4dB below shot noise from twin beams exhibiting 7.5dB of
noise reduction in the intensity difference.Comment: 4 pages, Accepted in Phys. Rev. Let
- …
