1,797 research outputs found
The psychology of computer displays in the modern mission control center
Work at NASA's Western Aeronautical Test Range (WATR) has demonstrated the need for increased consideration of psychological factors in the design of computer displays for the WATR mission control center. These factors include color perception, memory load, and cognitive processing abilities. A review of relevant work in the human factors psychology area is provided to demonstrate the need for this awareness. The information provided should be relevant in control room settings where computerized displays are being used
A refined sub-grid model for black hole accretion and AGN feedback in large cosmological simulations
In large scale cosmological hydrodynamic simulations simplified sub-grid
models for gas accretion onto black holes and AGN feedback are commonly used.
Such models typically depend on various free parameters, which are not well
constrained. We present a new advanced model containing a more detailed
description of AGN feedback, where those parameters reflect the results of
recent observations. The model takes the dependency of these parameters on the
black hole properties into account and describes a continuous transition
between the feedback processes acting in the so-called radio-mode and
quasar-mode. In addition, we implement a more detailed description of the
accretion of gas onto black holes by distinguishing between hot and cold gas
accretion. Our new implementations prevent black holes from gaining too much
mass, particularly at low redshifts so that our simulations are now very
successful in reproducing the observed present-day black hole mass function.
Our new model also suppresses star formation in massive galaxies slightly more
efficiently than many state-of-the-art models. Therefore, the simulations that
include our new implementations produce a more realistic population of
quiescent and star-forming galaxies compared to recent observations, even if
some discrepancies remain. In addition, the baryon conversion efficiencies in
our simulation are - except for the high mass end - consistent with
observations presented in literature over the mass range resolved by our
simulations. Finally, we discuss the significant impact of the feedback model
on the low-luminous end of the AGN luminosity function.Comment: 25 pages, 19 figures. MNRAS accepted. Magneticum website:
http://www.magneticum.or
Origin and properties of dual and offset active galactic nuclei in a cosmological simulation at z=2
In the last few years, it became possible to observationally resolve galaxies
with two distinct nuclei in their centre. For separations smaller than 10kpc,
dual and offset active galactic nuclei (AGN) are distinguished: in dual AGN,
both nuclei are active, whereas in offset AGN only one nucleus is active. To
study the origin of such AGN pairs, we employ a cosmological, hydrodynamic
simulation with a large volume of (182Mpc)^3 from the set of Magneticum
Pathfinder Simulations. The simulation self-consistently produces 35 resolved
black hole (BH) pairs at redshift z=2, with a comoving distance smaller than
10kpc. 14 of them are offset AGN and nine are dual AGN, resulting in a fraction
of (1.2 \pm 0.3)% AGN pairs with respect to the total number of AGN. In this
paper, we discuss fundamental differences between the BH and galaxy properties
of dual AGN, offset AGN and inactive BH pairs and investigate their different
triggering mechanisms. We find that in dual AGN the BHs have similar masses and
the corresponding BH from the less massive progenitor galaxy always accretes
with a higher Eddington ratio. In contrast, in offset AGN the active BH is
typically more massive than its non-active counterpart. Furthermore, dual AGN
in general accrete more gas from the intergalactic medium than offset AGN and
non-active BH pairs. This highlights that merger events, particularly minor
mergers, do not necessarily lead to strong gas inflows and thus, do not always
drive strong nuclear activity.Comment: 17 pages, 18 figures, accepted for publication in MNRAS, website:
http://www.magneticum.or
Strategies for Developing Sustainable Design Practice for Students and SME Professionals
Designers and engineers seem finally to be awakening to the challenge that sustainable development has given. Educators and students alike are keenly aware of the need to become more effective in the training and practice of their specific disciplines with respect to sustainability. \noindent In the past four years since this research has developed, there has been a marked change in the mass market appeal for sustainable products and services. Implementation of sustainable design practice from both recent graduates and also innovative small and medium enterprises (SMEs) at a local level is slow. One would assume that the consumer drive would push a change in design practice but perhaps the complexities of sustainable design along with the lack of experience in the field are providing barriers to designers and marketers alike. In addition the SME sector alone makes up the bulk of industry within the European Union (EU) varying in some countries from 80-95% of the total numbers of companies (Tukker et al. 2000). These industries by their nature find it difficult to dedicate expertise solely to sustainable development issues. The strategy outlined in this paper intended to introduce concepts of sustainable design thinking and practice to both SMEs and undergraduate students. \noindent This current and ongoing research qualitatively assesses appropriate models for educating for sustainable design thinking with SME employees and undergraduate design students. The sample groups include Industrial Design and Product Design undergraduate students in Ireland at the Institute of Technology, Carlow (IT Carlow), The University of Limerick (UL) and a sample of SMEs in the South East of Ireland, with broad national participation from other students of design and professionals from industry. Current levels of understanding of students and SME professionals of key environmental and social issues are measured
Distributed Management of Massive Data: an Efficient Fine-Grain Data Access Scheme
This paper addresses the problem of efficiently storing and accessing massive
data blocks in a large-scale distributed environment, while providing efficient
fine-grain access to data subsets. This issue is crucial in the context of
applications in the field of databases, data mining and multimedia. We propose
a data sharing service based on distributed, RAM-based storage of data, while
leveraging a DHT-based, natively parallel metadata management scheme. As
opposed to the most commonly used grid storage infrastructures that provide
mechanisms for explicit data localization and transfer, we provide a
transparent access model, where data are accessed through global identifiers.
Our proposal has been validated through a prototype implementation whose
preliminary evaluation provides promising results
Aerial sketchmapping for monitoring forest conditions in Southern Brazil.
Aerial sketchmapping is a simple, low cost remote sensing method used for detection and mapping of forest damage caused by biotic agents (insects, pathogens and other pests) and abiotic agents (wind, fire, storms, hurricane, ice storms) in North America. This method was introduced to Brazil in 2001/2002 via a USDA Forest Service/EMBRAPA technical exchange program, which included demonstration flights, a feasibility study, workshops, production of satellite maps, observer training and operational flights, primarily for assessment of damage caused by European wood wasp (Sirex noctilio), monkeys (Cebus nigritus), armillaria root disease (Armillaria spp.), and other damaging agents in pine plantations in Southern Brazil. New applications have been investigated in the most recent campaigns, carried out in 2003 and 2004. These include the use of this technique to monitor land use changes, evaluate the accuracy of classifications from satellite imagery, and to classify successional phases in remnants of Araucaria angustifolia forests in Southern Brazil. The operational flights have demonstrated that clearcuts, land use change detection and other anthropogenic activities may be suitably mapped and monitored from the air. Future activities are aimed at consolidation of this technique in Brazil, the identification of other damage signatures, such as those caused by the eucalyptus red gum lerp psyllid (Glycaspis brimblecombei), and the use of digital aerial sketchmapping methods
Exploiting the Synergy Between Gossiping and Structured Overlays
In this position paper we argue for exploiting the synergy between gossip-based algorithms and structured overlay networks (SON). These two strands of research have both aimed at building fault-tolerant, dynamic, self-managing, and large-scale distributed systems. Despite the common goals, the two areas have, however, been relatively isolated. We focus on three problem domains where there is an untapped potential of using gossiping combined with SONs. We argue for applying gossip-based membership for ring-based SONs---such as Chord and Bamboo---to make them handle partition mergers and loopy networks. We argue that small world SONs---such as Accordion and Mercury---are specifically well-suited for gossip-based membership management. The benefits would be better graph-theoretic properties. Finally, we argue that gossip-based algorithms could use the overlay constructed by SONs. For example, many unreliable broadcast algorithms for SONs could be augmented with anti-entropy protocols. Similarly, gossip-based aggregation could be used in SONs for network size estimation and load-balancing purposes
Unravelling cationic cellulose nanofibril hydrogel structure: NMR spectroscopy and small angle neutron scattering analyses
Stiff, elastic, viscous shear thinning aqueous gels are formed upon dispersion of low weight percent concentrations of cationically modified cellulose nanofibrils (CCNF) in water. CCNF hydrogels produced from cellulose modified with glycidyltrimethylammonium chloride, with degree of substitution (DS) in the range 10.6(3)–23.0(9)%, were characterised using NMR spectroscopy, rheology and small angle neutron scattering (SANS) to probe the fundamental form and dimensions of the CCNF and to reveal interfibrillar interactions leading to gelation. As DS increased CCNF became more rigid as evidenced by longer Kuhn lengths, 18–30 nm, derived from fitting of SANS data to an elliptical cross-section, cylinder model. Furthermore, apparent changes in CCNF cross-section dimensions suggested an “unravelling” of initially twisted fibrils into more flattened ribbon-like forms. Increases in elastic modulus (7.9–62.5 Pa) were detected with increased DS and 1H solution-state NMR T1 relaxation times of the introduced surface –N+(CH3)3 groups were found to be longer in hydrogels with lower DS, reflecting the greater flexibility of the low DS CCNF. This is the first time that such correlation between DS and fibrillar form and stiffness has been reported for these potentially useful rheology modifiers derived from renewable cellulose
- …
