1,670 research outputs found
Constitutional Limits on Private Policing and the State’s Allocation of Force
This Note argues that a variety of private police forces, such as university patrols and residential security guards, should. be held to the constitutional limitations found in the Bill of Rights. These private police act as arms of the state by supplying force in response to a public demand for order and security. The state, as sovereign, retains responsibility to allocate force, in the form of either public or private police, in response to public demand. This state responsibility-a facet of its police power-is evidenced throughout English and American history. When this force responds to a public demand for order and security, existing state action doctrine case law places both public and private force tinder constitutional scrutiny
Implications of the Method of Construction of UK Number Plates for Infrared Reflectance and Camera Settings on ANPR System
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper considers the implications of two aspects of number plates firstly the varied manufacturing process in the physical construction of vehicle number plates that might affect the reflectance characteristics and secondly the ANPR camera settings that affect the night time capture performance. These parameters have an effect on the overall performance of an Automatic Number Plate Recognition system. A set of controlled experiments on number plates is carried out to establish variation in the retroreflective response to illumination as well as field analysis on real world number plates
Buckling and strength analysis of panels with discrete stiffness tailoring
Continuous variation of stiffness across flat plates has been shown, theoretically, to improve buckling performance by up to 60%. However, steered fibre manufacturing methods cannot achieve the minimum radius of curvature required for improvement whilst maintaining a high deposition rate. An alternative concept, Discrete Stiffness Tailoring (DST), which varies stiffness within a ply through discrete changes of angle, is compatible with high rate deposition methods such as Advanced Tape Laying. Through the simple example of redistribution of the material in a quasi-isotropic [±45/90/0]2S laminate whilst maintaining ply percentages, DST is shown both experimentally and theoretically to improve buckling stress by at least 15% with no indication of failure in regions of discrete angle change (seams). However, the reduced tensile strength of seams obtained by virtual and experimental testing means that increased buckling performance in the principle load direction needs to be balanced against loss of transverse strengthThis work was supported by the UK EPSRC ADAPT research project (grant number EP/N024508/1) which is gratefully acknowledged. Richard Butler is supported by a Royal Academy of Engineering and GKN Aerospace Research Chair. Lucie Culliford’s PhD studentship is 50% funded by GKN Aerospace
Recommended from our members
Cell-type-specific resolution epigenetics without the need for cell sorting or single-cell biology.
High costs and technical limitations of cell sorting and single-cell techniques currently restrict the collection of large-scale, cell-type-specific DNA methylation data. This, in turn, impedes our ability to tackle key biological questions that pertain to variation within a population, such as identification of disease-associated genes at a cell-type-specific resolution. Here, we show mathematically and empirically that cell-type-specific methylation levels of an individual can be learned from its tissue-level bulk data, conceptually emulating the case where the individual has been profiled with a single-cell resolution and then signals were aggregated in each cell population separately. Provided with this unprecedented way to perform powerful large-scale epigenetic studies with cell-type-specific resolution, we revisit previous studies with tissue-level bulk methylation and reveal novel associations with leukocyte composition in blood and with rheumatoid arthritis. For the latter, we further show consistency with validation data collected from sorted leukocyte sub-types
Sustainable Oxygen: A low power approach for providing emergency medical oxygen for spacecraft and hospitals in developing countries
An oxygen concentrator targeting an 80% reduction in power demand over commercial systems is being developed using a pressure swing adsorption process. This system is targeted for a service interval five times longer than commercial systems, and is tolerant to high humidity environments- the leading cause of device failure in developing countries. This system could provide emergency medical oxygen in a spacecraft without increasing oxygen concentration in the vehicle. Flight surgeons seek this capability, but presently, there is no system that meets power, size, and delivery rate requirements. This type of system is also well suited for medical oxygen in hospitals in developing countries. Pneumonia accounts for 5% of all childhood deaths in Africa, and a lack of medical oxygen contributes to mortality rates. This new approach involves a high flow - low power - low purity device. The process proposes a regenerative blower instead of a piston compressor, a humidity tolerant sorbent, and a non-traditional separation cycle
Hypomethylation of CYP2E1 and DUSP22 Promoters Associated With Disease Activity and Erosive Disease Among Rheumatoid Arthritis Patients.
OBJECTIVE:Epigenetic modifications have previously been associated with rheumatoid arthritis (RA). In this study, we aimed to determine whether differential DNA methylation in peripheral blood cell subpopulations is associated with any of 4 clinical outcomes among RA patients. METHODS:Peripheral blood samples were obtained from 63 patients in the University of California, San Francisco RA cohort (all satisfied the American College of Rheumatology classification criteria; 57 were seropositive for rheumatoid factor and/or anti-cyclic citrullinated protein). Fluorescence-activated cell sorting was used to separate the cells into 4 immune cell subpopulations (CD14+ monocytes, CD19+ B cells, CD4+ naive T cells, and CD4+ memory T cells) per individual, and 229 epigenome-wide DNA methylation profiles were generated using Illumina HumanMethylation450 BeadChips. Differentially methylated positions and regions associated with the Clinical Disease Activity Index score, erosive disease, RA Articular Damage score, Sharp score, medication at time of blood draw, smoking status, and disease duration were identified using robust regression models and empirical Bayes variance estimators. RESULTS:Differential methylation of CpG sites associated with clinical outcomes was observed in all 4 cell types. Hypomethylated regions in the CYP2E1 and DUSP22 gene promoters were associated with active and erosive disease, respectively. Pathway analyses suggested that the biologic mechanisms underlying each clinical outcome are cell type-specific. Evidence of independent effects on DNA methylation from smoking, medication use, and disease duration were also identified. CONCLUSION:Methylation signatures specific to RA clinical outcomes may have utility as biomarkers or predictors of exposure, disease progression, and disease severity
Rheumatoid Arthritis Naive T Cells Share Hypermethylation Sites With Synoviocytes.
ObjectiveTo determine whether differentially methylated CpGs in synovium-derived fibroblast-like synoviocytes (FLS) of patients with rheumatoid arthritis (RA) were also differentially methylated in RA peripheral blood (PB) samples.MethodsFor this study, 371 genome-wide DNA methylation profiles were measured using Illumina HumanMethylation450 BeadChips in PB samples from 63 patients with RA and 31 unaffected control subjects, specifically in the cell subsets of CD14+ monocytes, CD19+ B cells, CD4+ memory T cells, and CD4+ naive T cells.ResultsOf 5,532 hypermethylated FLS candidate CpGs, 1,056 were hypermethylated in CD4+ naive T cells from RA PB compared to control PB. In analyses of a second set of CpG candidates based on single-nucleotide polymorphisms from a genome-wide association study of RA, 1 significantly hypermethylated CpG in CD4+ memory T cells and 18 significant CpGs (6 hypomethylated, 12 hypermethylated) in CD4+ naive T cells were found. A prediction score based on the hypermethylated FLS candidates had an area under the curve of 0.73 for association with RA case status, which compared favorably to the association of RA with the HLA-DRB1 shared epitope risk allele and with a validated RA genetic risk score.ConclusionFLS-representative DNA methylation signatures derived from the PB may prove to be valuable biomarkers for the risk of RA or for disease status
- …
