19,566 research outputs found
A theoretical study of microwave beam absorption by a rectenna
The rectenna's microwave power beam absorption limit was theoretically confirmed by two mathematical models descriptive of the microwave absorption process; first one model was based on the current sheet equivalency of a large planar array above a reflector and the second model, which was based on the properties of a waveguide with special imaging characteristics, quantified the electromagnetic modes (field configurations) in the immediate vicinity of a Rectenna element spacing which permit total power beam absorption by preventing unwanted modes from propagating (scattering) were derived using these models. Several factors causing unwanted scattering are discussed
Spin Gaps in Coupled t-J Ladders
Spin gaps in coupled - ladders are investigated by exact
diagonalization of small clusters up to 48 sites. At half-filling, the
numerical results for the triplet excitation spectrum are in very good
agreement with a second order perturbation expansion in term of small
inter-ladder and intra-ladder exchange couplings between rungs
(). The band of local triplet excitations moving
coherently along the ladder (with momenta close to ) is split by the
inter-ladder coupling. For intermediate couplings finite size scaling is used
to estimate the spin gap. In the isotropic infinite 4-chain system (two coupled
ladders) we find a spin gap of , roughly half of the single ladder
spin gap. When the system is hole doped, bonding and anti-bonding bound pairs
of holes can propagate coherently along the chains and the spin gap remains
finite.Comment: 11 pages, 5 figures, uuencoded form of postscript files of figures
and text, LPQTH-94/
Strong Coupling Expansions for Antiferromagnetic Heisenberg S=1/2 Ladders
The properties of antiferromagnetic Heisenberg ladders with
2, 3, and 4 chains are expanded in the ratio of the intra- and interchain
coupling constants. A simple mapping procedure is introduced to relate the 4
and 2-chain ladders which holds down to moderate values of the expansion
parameters. A second order calculation of the spin gap to the lowest triplet
excitation in the 2- and 4-chain ladders is found to be quite accurate even at
the isotropic point where the couplings are equal. Similar expansions and
mapping procedures are presented for the 3-chain ladders which are in the same
universality class as single chains.Comment: 10 physical pages, uuencoded compressed PostScript file including 12
figures, ETH-TH/942
Unitary transformations for testing Bell inequalities
It is shown that optical experimental tests of Bell inequality violations can
be described by SU(1,1) transformations of the vacuum state, followed by photon
coincidence detections. The set of all possible tests are described by various
SU(1,1) subgroups of Sp(8,). In addition to establishing a common
formalism for physically distinct Bell inequality tests, the similarities and
differences of post--selected tests of Bell inequality violations are also made
clear. A consequence of this analysis is that Bell inequality tests are
performed on a very general version of SU(1,1) coherent states, and the
theoretical violation of the Bell inequality by coincidence detection is
calculated and discussed. This group theoretical approach to Bell states is
relevant to Bell state measurements, which are performed, for example, in
quantum teleportation.Comment: 3 figure
Low Noise 1 THz–1.4 THz Mixers Using Nb/Al-AlN/NbTiN SIS Junctions
We present the development of a low noise 1.2 THz and 1.4 THz SIS mixers for heterodyne spectrometry on the Stratospheric Observatory For Infrared Astronomy (SOFIA) and Herschel Space Observatory. This frequency range is above the limit for the commonly used Nb quasi particle SIS junctions, and a special type of hybrid Nb/AlN/NbTiN junctions has been developed for this project.We are using a quasi-optical mixer design with two Nb/AlN/NbTiN junctions with an area of 0.25 µm^2. The SIS junction tuning circuit is made of Nb and gold wire layers. At 1.13 THz the minimum SIS receiver uncorrected noise temperature is 450 K. The SIS receiver noise corrected for the loss in the LO coupler and in the cryostat optics is 350–450 K across 1.1–1.25 THz band. The receiver has a uniform sensitivity in a full 4–8 GHz IF band.
The 1.4 THz SIS receiver test at 1.33–1.35 THz gives promising results, although limited by the level of available LO power. Extrapolation of the data obtained with low LO power level shows a possibility to reach 500 K DSB receiver noise using already existing SIS mixer
GaN/AlN Quantum Dots for Single Qubit Emitters
We study theoretically the electronic properties of -plane GaN/AlN quantum
dots (QDs) with focus on their potential as sources of single polarized photons
for future quantum communication systems. Within the framework of eight-band
k.p theory we calculate the optical interband transitions of the QDs and their
polarization properties. We show that an anisotropy of the QD confinement
potential in the basal plane (e.g. QD elongation or strain anisotropy) leads to
a pronounced linear polarization of the ground state and excited state
transitions. An externally applied uniaxial stress can be used to either induce
a linear polarization of the ground-state transition for emission of single
polarized photons or even to compensate the polarization induced by the
structural elongation.Comment: 6 pages, 9 figures. Accepted at Journal of Physics: Condensed Matte
Kramers escape driven by fractional Brownian motion
We investigate the Kramers escape from a potential well of a test particle
driven by fractional Gaussian noise with Hurst exponent 0<H<1. From a numerical
analysis we demonstrate the exponential distribution of escape times from the
well and analyze in detail the dependence of the mean escape time as function
of H and the particle diffusivity D. We observe different behavior for the
subdiffusive (antipersistent) and superdiffusive (persistent) domains. In
particular we find that the escape becomes increasingly faster for decreasing
values of H, consistent with previous findings on the first passage behavior.
Approximate analytical calculations are shown to support the numerically
observed dependencies.Comment: 14 pages, 16 figures, RevTeX
Probabilistic state preparation of a single molecular ion by projection measurement
We show how to prepare a single molecular ion in a specific internal quantum
state in a situation where the molecule is trapped and sympathetically cooled
by an atomic ion and where its internal degrees of freedom are initially in
thermal equilibrium with the surroundings. The scheme is based on conditional
creation of correlation between the internal state of the molecule and the
translational state of the collective motion of the two ions, followed by a
projection measurement of this collective mode by atomic ion shelving
techniques. State preparation in a large number of internal states is possible.Comment: 4 pages, 2 figures, 2 table
Cooperating or Fighting with Decoherence in the Optimal Control of Quantum Dynamics
This paper explores the use of laboratory closed-loop learning control to
either fight or cooperate with decoherence in the optimal manipulation of
quantum dynamics. Simulations of the processes are performed in a Lindblad
formulation on multilevel quantum systems strongly interacting with the
environment without spontaneous emission. When seeking a high control yield it
is possible to find fields that successfully fight with decoherence while
attaining a good quality yield. When seeking modest control yields, fields can
be found which are optimally shaped to cooperate with decoherence and thereby
drive the dynamics more efficiently. In the latter regime when the control
field and the decoherence strength are both weak, a theoretical foundation is
established to describe how they cooperate with each other. In general, the
results indicate that the population transfer objectives can be effectively met
by appropriately either fighting or cooperating with decoherence
Management decisions for bean leaf beetles and bean pod mottle virus
Yogi Berra said, If you come to a fork in the road, take it. Many soybean producers will be at that fork in a couple of weeks, trying to decide whether or not to spray overwintered bean leaf beetles, and determining how to manage bean pod mottle virus. The dilemma is that some overwintered bean leaf beetles may transmit bean pod mottle virus and not knowing where in Iowa the problem is most likely to occur, what percentage of beetles are transmitting the virus, or when to spray can greatly complicate management decisions
- …
