1,435 research outputs found
To translate, or not to translate: viral and host mRNA regulation by interferon-stimulated genes.
Type I interferon (IFN) is one of the first lines of cellular defense against viral pathogens. As a result of IFN signaling, a wide array of IFN-stimulated gene (ISG) products is upregulated to target different stages of the viral life cycle. We review recent findings implicating a subset of ISGs in translational regulation of viral and host mRNAs. Translation inhibition is mediated either by binding to viral RNA or by disrupting physiological interactions or levels of the translation complex components. In addition, many of these ISGs localize to translationally silent cytoplasmic granules, such as stress granules and processing bodies, and intersect with the microRNA (miRNA)-mediated silencing pathway to regulate translation of cellular mRNAs
ZAP's stress granule localization is correlated with its antiviral activity and induced by virus replication.
Cellular antiviral programs encode molecules capable of targeting multiple steps in the virus lifecycle. Zinc-finger antiviral protein (ZAP) is a central and general regulator of antiviral activity that targets pathogen mRNA stability and translation. ZAP is diffusely cytoplasmic, but upon infection ZAP is targeted to particular cytoplasmic structures, termed stress granules (SGs). However, it remains unclear if ZAP's antiviral activity correlates with SG localization, and what molecular cues are required to induce this localization event. Here, we use Sindbis virus (SINV) as a model infection and find that ZAP's localization to SGs can be transient. Sometimes no apparent viral infection follows ZAP SG localization but ZAP SG localization always precedes accumulation of SINV non-structural protein, suggesting virus replication processes trigger SG formation and ZAP recruitment. Data from single-molecule RNA FISH corroborates this finding as the majority of cells with ZAP localization in SGs contain low levels of viral RNA. Furthermore, ZAP recruitment to SGs occurred in ZAP-expressing cells when co-cultured with cells replicating full-length SINV, but not when co-cultured with cells replicating a SINV replicon. ZAP recruitment to SGs is functionally important as a panel of alanine ZAP mutants indicate that the anti-SINV activity is correlated with ZAP's ability to localize to SGs. As ZAP is a central component of the cellular antiviral programs, these data provide further evidence that SGs are an important cytoplasmic antiviral hub. These findings provide insight into how antiviral components are regulated upon virus infection to inhibit virus spread
Recommended from our members
Interferon regulatory factor 2 protects mice from lethal viral neuroinvasion.
The host responds to virus infection by activating type I interferon (IFN) signaling leading to expression of IFN-stimulated genes (ISGs). Dysregulation of the IFN response results in inflammatory diseases and chronic infections. In this study, we demonstrate that IFN regulatory factor 2 (IRF2), an ISG and a negative regulator of IFN signaling, influences alphavirus neuroinvasion and pathogenesis. A Sindbis virus strain that in wild-type (WT) mice only causes disease when injected into the brain leads to lethal encephalitis in Irf2-/- mice after peripheral inoculation. Irf2-/- mice fail to control virus replication and recruit immune infiltrates into the brain. Reduced B cells and virus-specific IgG are observed in the Irf2-/- mouse brains despite the presence of peripheral neutralizing antibodies, suggesting a defect in B cell trafficking to the central nervous system (CNS). B cell-deficient μMT mice are significantly more susceptible to viral infection, yet WT B cells and serum are unable to rescue the Irf2-/- mice. Collectively, our data demonstrate that proper localization of B cells and local production of antibodies in the CNS are required for protection. The work advances our understanding of host mechanisms that affect viral neuroinvasion and their contribution to immunity against CNS infections
Effects of Thyroxine Exposure on Osteogenesis in Mouse Calvarial Pre-Osteoblasts
The incidence of craniosynostosis is one in every 1,800-2500 births. The gene-environment model proposes that if a genetic predisposition is coupled with environmental exposures, the effects can be multiplicative resulting in severely abnormal phenotypes. At present, very little is known about the role of gene-environment interactions in modulating craniosynostosis phenotypes, but prior evidence suggests a role for endocrine factors. Here we provide a report of the effects of thyroid hormone exposure on murine calvaria cells. Murine derived calvaria cells were exposed to critical doses of pharmaceutical thyroxine and analyzed after 3 and 7 days of treatment. Endpoint assays were designed to determine the effects of the hormone exposure on markers of osteogenesis and included, proliferation assay, quantitative ALP activity assay, targeted qPCR for mRNA expression of Runx2, Alp, Ocn, and Twist1, genechip array for 28,853 targets, and targeted osteogenic microarray with qPCR confirmations. Exposure to thyroxine stimulated the cells to express ALP in a dose dependent manner. There were no patterns of difference observed for proliferation. Targeted RNA expression data confirmed expression increases for Alp and Ocn at 7 days in culture. The genechip array suggests substantive expression differences for 46 gene targets and the targeted osteogenesis microarray indicated 23 targets with substantive differences. 11 gene targets were chosen for qPCR confirmation because of their known association with bone or craniosynostosis (Col2a1, Dmp1, Fgf1, 2, Igf1, Mmp9, Phex, Tnf, Htra1, Por, and Dcn). We confirmed substantive increases in mRNA for Phex, FGF1, 2, Tnf, Dmp1, Htra1, Por, Igf1 and Mmp9, and substantive decreases for Dcn. It appears thyroid hormone may exert its effects through increasing osteogenesis. Targets isolated suggest a possible interaction for those gene products associated with calvarial suture growth and homeostasis as well as craniosynostosis. © 2013 Cray et al
Crack-Like Processes Governing the Onset of Frictional Slip
We perform real-time measurements of the net contact area between two blocks
of like material at the onset of frictional slip. We show that the process of
interface detachment, which immediately precedes the inception of frictional
sliding, is governed by three different types of detachment fronts. These
crack-like detachment fronts differ by both their propagation velocities and by
the amount of net contact surface reduction caused by their passage. The most
rapid fronts propagate at intersonic velocities but generate a negligible
reduction in contact area across the interface. Sub-Rayleigh fronts are
crack-like modes which propagate at velocities up to the Rayleigh wave speed,
VR, and give rise to an approximate 10% reduction in net contact area. The most
efficient contact area reduction (~20%) is precipitated by the passage of slow
detachment fronts. These fronts propagate at anomalously slow velocities, which
are over an order of magnitude lower than VR yet orders of magnitude higher
than other characteristic velocity scales such as either slip or loading
velocities. Slow fronts are generated, in conjunction with intersonic fronts,
by the sudden arrest of sub-Rayleigh fronts. No overall sliding of the
interface occurs until either of the slower two fronts traverses the entire
interface, and motion at the leading edge of the interface is initiated. Slip
at the trailing edge of the interface accompanies the motion of both the slow
and sub-Rayleigh fronts. We might expect these modes to be important in both
fault nucleation and earthquake dynamics.Comment: 19 page, 5 figures, to appear in International Journal of Fractur
High-fidelity quantum driving
The ability to accurately control a quantum system is a fundamental
requirement in many areas of modern science such as quantum information
processing and the coherent manipulation of molecular systems. It is usually
necessary to realize these quantum manipulations in the shortest possible time
in order to minimize decoherence, and with a large stability against
fluctuations of the control parameters. While optimizing a protocol for speed
leads to a natural lower bound in the form of the quantum speed limit rooted in
the Heisenberg uncertainty principle, stability against parameter variations
typically requires adiabatic following of the system. The ultimate goal in
quantum control is to prepare a desired state with 100% fidelity. Here we
experimentally implement optimal control schemes that achieve nearly perfect
fidelity for a two-level quantum system realized with Bose-Einstein condensates
in optical lattices. By suitably tailoring the time-dependence of the system's
parameters, we transform an initial quantum state into a desired final state
through a short-cut protocol reaching the maximum speed compatible with the
laws of quantum mechanics. In the opposite limit we implement the recently
proposed transitionless superadiabatic protocols, in which the system perfectly
follows the instantaneous adiabatic ground state. We demonstrate that
superadiabatic protocols are extremely robust against parameter variations,
making them useful for practical applications.Comment: 17 pages, 4 figure
Interpopulation variation in female remating is attributable to female and male effects in Callosobruchus chinensis
The evolution of female multiple mating is best understood by consideration of male and female reproductive perspectives. Females should usually be selected to remate at their optimum frequencies whereas males should be selected to manipulate female remating to their advantage. Female remating behavior may therefore be changed by variation of male and female traits. In this study, our objective was to separate the effects of female and male strains on female remating for the adzuki bean beetle, Callosobruchus chinensis, for which there is interstrain variation in female remating frequency. We found that interstrain variation in female remating is primarily attributable to female traits, suggesting genetic variation in female receptivity to remating in C. chinensis. Some interstrain variation in female remating propensity was attributable to an interaction between female and male strains, however, with the males of some strains being good at inducing nonreceptivity in females from one high-remating strain whereas others were good at inducing copulation in nonvirgin females from the high-remating strain. There is, therefore, interstrain variation in male ability to deter females from remating and in male ability to mate successfully with nonvirgin females. These results suggest that mating traits have evolved along different trajectories in different strains of C. chinensis.</p
Multilevel Deconstruction of the In Vivo Behavior of Looped DNA-Protein Complexes
Protein-DNA complexes with loops play a fundamental role in a wide variety of
cellular processes, ranging from the regulation of DNA transcription to
telomere maintenance. As ubiquitous as they are, their precise in vivo
properties and their integration into the cellular function still remain
largely unexplored. Here, we present a multilevel approach that efficiently
connects in both directions molecular properties with cell physiology and use
it to characterize the molecular properties of the looped DNA-lac repressor
complex while functioning in vivo. The properties we uncover include the
presence of two representative conformations of the complex, the stabilization
of one conformation by DNA architectural proteins, and precise values of the
underlying twisting elastic constants and bending free energies. Incorporation
of all this molecular information into gene-regulation models reveals an
unprecedented versatility of looped DNA-protein complexes at shaping the
properties of gene expression.Comment: Open Access article available at
http://www.plosone.org/article/fetchArticle.action?articleURI=info%3Adoi%2F10.1371%2Fjournal.pone.000035
- …
