278 research outputs found
Transmission of Predictable Sensory Signals to the Cerebellum via Climbing Fiber Pathways Is Gated during Exploratory Behavior
International audiencePathways arising from the periphery that target the inferior olive [spino-olivocerebellar pathways (SOCPs)] are a vital source of information to the cerebellum and are modulated (gated) during active movements. This limits their ability to forward signals to climbing fibers in the cerebellar cortex. We tested the hypothesis that the temporal pattern of gating is related to the predictability of a sensory signal. Low-intensity electrical stimulation of the ipsilateral hindlimb in awake rats evoked field potentials in the C1 zone in the copula pyramidis of the cerebellar cortex. Responses had an onset latency of 12.5 +/- 0.3 ms and were either short or long duration (8.7 +/- 0.1 vs 31.2 +/- 0.3 ms, respectively). Both types of response were shown to be mainly climbing fiber in origin and therefore evoked by transmission in hindlimb SOCPs. Changes in response size (area of field, millivolts per millisecond) were used to monitor differences in transmission during rest and three phases of rearing: phase 1, rearing up; phase 2, upright; and phase 3, rearing down. Responses evoked during phase 2 were similar in size to rest but were smaller during phases 1 and 3, i.e., transmission was reduced during active movement when self-generated (predictable) sensory signals from the hindlimbs are likely to occur. To test whether the pattern of gating was related to the predictability of the sensory signal, some animals received the hindlimb stimulation only during phase 2. Over similar to 10 d, the responses became progressively smaller in size, consistent with gating-out transmission of predictable sensory signals relayed via SOCPs
Neural Correlates of Fear in the Periaqueductal Gray
International audienceThe dorsal and ventral periaqueductal gray (dPAG and vPAG, respectively) are embedded in distinct survival networks that coordinate, respectively, innate and conditioned fear-evoked freezing. However, the information encoded by the PAG during these survival behaviors is poorly understood. Recordings in the dPAG and vPAG in rats revealed differences in neuronal activity associated with the two behaviors. During innate fear, neuronal responses were significantly greater in the dPAG compared with the vPAG. After associative fear conditioning and during early extinction (EE), when freezing was maximal, a field potential was evoked in the PAG by the auditory fear conditioned stimulus (CS). With repeated presentations of the unreinforced CS, animals displayed progressively less freezing accompanied by a reduction in event-related field potential amplitude. During EE, the majority of dPAG and vPAG units increased their firing frequency, but spike-triggered averaging showed that only ventral activity during the presentation of the CS was significantly coupled to EMG-related freezing behavior. This PAG–EMG coupling was only present for the onset of freezing activity during the CS in EE. During late extinction, a subpopulation of units in the dPAG and vPAG continued to show CS-evoked responses; that is, they were extinction resistant. Overall, these findings support roles for the dPAG in innate and conditioned fear and for the vPAG in initiating but not maintaining the drive to muscles to generate conditioned freezing. The existence of extinction-susceptible and extinction-resistant cells also suggests that the PAG plays a role in encoding fear memories
Molecular characterisation of childhood craniopharyngioma and identification and testing of novel drug targets
BACKGROUND: Adamantinomatous Craniopharyngiomas (ACPs) are clinically challenging sellar region tumours, known to be characterised by mutations in CTNNB1. ACPs are often histologically complex, with different morphological cell types and surrounded by a florid glial reaction. Murine models have been generated through activating β-catenin and support a critical role for nucleo-cytoplasmic accumulating β-catenin cell clusters (‘clusters’) in driving tumorigenesis. AIMS: To phenotype in detail the 3D growth patterns of human and murine ACP; To characterise the genomic and transcriptomic landscape of human and murine ACP, including of clusters; To characterise therapeutically targetable molecular pathways and perform pre-clinical therapeutic trials. METHODS: Human ACP samples underwent micro-focus-CT scanning, whole genome sequencing, targeted next generation sequencing and RNA sequencing, both with, and without, laser capture microdissection. The growth dynamics of murine ACP was characterised by serial MRI and a cohort of murine ACPs, at various stages, underwent RNA and exome sequencing. A pre-clinical murine trial using a Sonic Hedgehog (SHH) pathway inhibitor was performed. RESULTS: CTNNB1 mutationsin human ACP were confirmed as clonal within tumour epithelia. Gene expression signatures corresponding to tumour epithelia, reactive glia and immune infiltrate were derived and novel ACP genes were identified (e.g. BCL11B). A relationship between human and murine ACPs with the developing tooth was also established, in particular the similarity of clusters to the enamel knot. Further molecular dissection identified a complex interplay between tumour cell compartments demonstrating a role for paracrine signalling. Inhibition of the SHH pathway in the pre-clinical murine trial resulted in a decrease in median survival from 33 weeks to 11.9 weeks (p=0.048). A signature of inflammasome activation in ACP was also identified in solid and cystic components of ACP. CONCLUSIONS: ACPs have clonal mutations in CTNNB1 and exhibit complex signalling interplay between different cell compartments. Expression analysis reveals a new molecular paradigm for understanding ACP tumorigenesis as an aberrant copycat of natural tooth development, with inflammation driven by activation of inflammasomes. Caution is recommended in the use of SHH pathway inhibitors in patients with ACP
The Roles of the Olivocerebellar Pathway in Motor Learning and Motor Control. A consensus paper
Electrophysiological Mapping of Novel Prefrontal – Cerebellar Pathways
Whilst the cerebellum is predominantly considered a sensorimotor control structure, accumulating evidence suggests that it may also subserve non-motor functions during cognition. However, this possibility is not universally accepted, not least because the nature and pattern of links between higher cortical structures and the cerebellum are poorly characterized. We have therefore used in vivo electrophysiological methods in anaesthetized rats to directly investigate connectivity between the medial prefrontal cortex (prelimbic subdivision, PrL) and the cerebellum. Stimulation of deep layers of PrL evoked distinct field potentials in the cerebellar cortex with a mean latency to peak of approximately 35 ms. These responses showed a well-defined topography, and were maximal in lobule VII of the contralateral vermis (a known oculomotor centre); they were not attenuated by local anaesthesia of the overlying M2 motor cortex, though M2 stimulation did evoke field potentials in lobule VII with a shorter latency (approximately 30 ms). Single unit recordings showed that prelimbic cortical stimulation elicits complex spikes in lobule VII Purkinje cells, indicating transmission via a previously undescribed cerebro-olivocerebellar pathway. Our results therefore establish a physiological basis for communication between PrL and the cerebellum. The role(s) of this pathway remain to be resolved, but presumably relate to control of eye movements and/or distributed networks associated with integrated prefrontal cortical functions
Pre-movement changes in sensorimotor beta oscillations predict motor adaptation drive
International audienceBeta frequency oscillations in scalp electroencephalography (EEG) recordings over the primary motor cortex have been associated with the preparation and execution of voluntary movements. Here, we test whether changes in beta frequency are related to the preparation of adapted movements in human, and whether such effects generalise to other species (cat). Eleven healthy adult humans performed a joystick visuomotor adaptation task. Beta (15-25 Hz) scalp EEG signals recorded over the motor cortex during a pre-movement preparatory phase were, on average, significantly reduced in amplitude during early adaptation trials compared to baseline, late adaptation, or aftereffect trials. The changes in beta were not related to measurements of reaction time or reach duration. We also recorded local field potential (LFP) activity within the primary motor cortex of three cats during a prism visuomotor adaptation task. Analysis of these signals revealed similar reductions in motor cortical LFP beta frequencies during early adaptation. This effect was present when controlling for any influence of the reaction time and reach duration. Overall, the results are consistent with a reduction in pre-movement beta oscillations predicting an increase in adaptive drive in upcoming task performance when motor errors are largest in magnitude and the rate of adaptation is greatest
Non-invasive Stimulation of the Cerebellum in Health and Disease
The cerebellum is linked to motor, cognitive and affective functions. Anatomically, the cerebellum is part of an interconnected network including a wide range of other brain structures. This chapter reviews ways in which non-invasive stimulation has been used to activate or inhibit these circuits and how this has contributed to our understanding of cerebellar function in both motor and non-motor domains. The utility of non-invasive stimulation of the cerebellum in the treatment of neurological and psychiatric diseases (Parkinson’s disease, cerebellar ataxia, stroke, depression and schizophrenia) is discussed. The chapter concludes with consideration of the challenges that must be overcome if non-invasive cerebellar stimulation is to be adopted in a wider clinical setting
Cerebellar Modules and Their Role as Operational Cerebellar Processing Units
The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form
- …
