347 research outputs found

    Ice cores and SeaRISE: What we do (and don't) know

    Get PDF
    Ice core analyses are needed in SeaRISE to learn what the West Antarctic ice sheet and other marine ice sheets were like in the past, what climate changes led to their present states, and how they behave. The major results of interest to SeaRISE from previous ice core analyses in West Antarctic are that the end of the last ice age caused temperature and accumulation rate increases in inland regions, leading to ice sheet thickening followed by thinning to the present

    Conformational Preferences of 3-(Dimethylazinoyl)propanoic Acid as a Function of pH and Solvent; Intermolecular versus Intramolecular Hydrogen Bonding

    Get PDF
    The conformational equilibrium of 3-(dimethylazinoyl)propanoic acid (DMAPA, azinoyl = N^+(O^−) has a weak pH-dependence in D_2O, with a slight preference for trans in alkaline solutions. The acid ionization constants of the protonated amine oxide and carboxylic functional groups as determined by NMR spectroscopy were 7.9 × 10^(−4) and 6.3 × 10^(−6), respectively. The corresponding value of K_1/K_2 of 1.3 × 10^2 is not deemed large enough to provide experimental NMR evidence for a significant degree of intramolecular hydrogen bonding in D_2O. Conformational preferences of DMAPA are mostly close to statistical (gauche/trans = 2/1) in other protic solvents, e.g., alcohols. However, the un-ionized form of DMAPA appears to be strongly intramolecularly hydrogen-bonded and gauche in aprotic solvents

    Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    Get PDF
    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matche

    Characteristics of the sticky spot of Kamb Ice Stream, West Antarctica

    Get PDF
    Amplitude analysis of reflection seismic data reveals the presence of highly variable bed conditions under the main sticky spot and adjacent regions of the Kamb Ice Stream (KIS—formerly ice stream C). The sticky spot, which is a zone of bed that imparts high basal resistance to ice flow, is situated on a local topographic high composed of consolidated sediments or sedimentary rock. Any meltwater draining from upglacier along the base of the ice is routed around the sticky spot. The ice over the sticky spot includes, in at least some places, a seismically detectable basal layer containing a low concentration of debris, which locally thickens to 40 m over a topographic low in the bed. The ice-contact basal material ranges from dilated and highly porous to more-compacted and stiff, and perhaps locally frozen. The softer material is preferentially in topographic lows, but there is not a one-to-one correspondence between basal character and basal topography. We speculate that the 40-m-thick frozen-on debris layer formed by glaciohydraulic supercooling of lake-drainage events along a basal channel during the former, active phase of the ice stream. We also speculate that loss of lubricating water, perhaps from piracy upstream, contributed to the slowdown of the ice stream, with drag from the sticky spot playing an important role, and with the basal heterogeneity greatly increasing after the slowdown of the ice stream

    Ice-Shelf Tidal Flexure and Subglacial Pressure Variations

    Get PDF
    We develop a model of an ice shelf-ice stream system as a viscoelastic beam partially supported by an elastic foundation. When bed rock near the grounding line acts as a fulcrum, leverage from the ice shelf dropping at low tide can cause significant (approx 1 cm) uplift in the first few kilometers of grounded ice.This uplift and the corresponding depression at high tide lead to basal pressure variations of sufficient magnitude to influence subglacial hydrology.Tidal flexure may thus affect basal lubrication, sediment flow, and till strength, all of which are significant factors in ice-stream dynamics and grounding-line stability. Under certain circumstances, our results suggest the possibility of seawater being drawn into the subglacial water system. The presence of sea water beneath grounded ice would significantly change the radar reflectivity of the grounding zone and complicate the interpretation of grounded versus floating ice based on ice-penetrating radar observations

    Ice-front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland

    Get PDF
    We used satellite images to examine the calving behavior of Helheim and Kangerdlugssuaq Glaciers, Greenland, from 2001 to 2006, a period in which they retreated and sped up. These data show that many large iceberg-calving episodes coincided with teleseismically detected glacial earthquakes, suggesting that calving-related processes are the source of the seismicity. For each of several events for which we have observations, the ice front calved back to a large, pre-existing rift. These rifts form where the ice has thinned to near flotation as the ice front retreats down the back side of a bathymetric high, which agrees well with earlier theoretical predictions. In addition to the recent retreat in a period of higher temperatures, analysis of several images shows that Helheim retreated in the 20th Century during a warmer period and then re-advanced during a subsequent cooler period. This apparent sensitivity to warming suggests that higher temperatures may promote an initial retreat off a bathymetric high that is then sustained by tidewater dynamics as the ice front retreats into deeper water. The cycle of frontal advance and retreat in less than a century indicates that tidewater glaciers in Greenland can advance rapidly. Greenland's larger reservoir of inland ice and conditions that favor the formation of ice shelves likely contribute to the rapid rates of advance
    corecore