7,441 research outputs found

    Life long learning in rural areas: a report to the Countryside Agency

    Get PDF
    Lifelong Learning is a broad umbrella term which includes many different kinds of provision and different forms of learning. At its heart is formal learning, often classroom based, or involving paper and electronic media, undertaken within educational institutions such as colleges and universities. It may or may not lead to an award and it includes learning undertaken for vocational reasons as well as for general interest. It encompasses what are sometimes also known as adult education, continuing education, continuing professional development (cpd), vocational training and the acquisition of basic skills. It may also include work-based learning, and may overlap with post compulsory (post 16) education, i.e. with further education and higher education, but normally applies to all ‘adult learning’ i.e. by people over the age of 19, in particular those who are returning to study after completing their initial education. From the perspective of the individual learner, however, non-formal learning (organised, systematic study carried on outside the framework of the formal system) is also important. This forms a continuum with informal learning that occurs frequently in the process of daily living, sometimes coincidentally for example through information media or through interpretive provision (such as at museums or heritage sites ). This report focuses on those aspects of adult learning which are directly affected by government policies, and thus of prime concern for rural proofing

    The Carnegie Astrometric Planet Search Program

    Full text link
    We are undertaking an astrometric search for gas giant planets and brown dwarfs orbiting nearby low mass dwarf stars with the 2.5-m du Pont telescope at the Las Campanas Observatory in Chile. We have built two specialized astrometric cameras, the Carnegie Astrometric Planet Search Cameras (CAPSCam-S and CAPSCam-N), using two Teledyne Hawaii-2RG HyViSI arrays, with the cameras' design having been optimized for high accuracy astrometry of M dwarf stars. We describe two independent CAPSCam data reduction approaches and present a detailed analysis of the observations to date of one of our target stars, NLTT 48256. Observations of NLTT 48256 taken since July 2007 with CAPSCam-S imply that astrometric accuracies of around 0.3 milliarcsec per hour are achievable, sufficient to detect a Jupiter-mass companion orbiting 1 AU from a late M dwarf 10 pc away with a signal-to-noise ratio of about 4. We plan to follow about 100 nearby (primarily within about 10 pc) low mass stars, principally late M, L, and T dwarfs, for 10 years or more, in order to detect very low mass companions with orbital periods long enough to permit the existence of habitable, Earth-like planets on shorter-period orbits. These stars are generally too faint and red to be included in ground-based Doppler planet surveys, which are often optimized for FGK dwarfs. The smaller masses of late M dwarfs also yield correspondingly larger astrometric signals for a given mass planet. Our search will help to determine whether gas giant planets form primarily by core accretion or by disk instability around late M dwarf stars.Comment: 48 pages, 9 figures. in press, Publ. Astron. Soc. Pacifi

    Mass and p-factor of the type II Cepheid OGLE-LMC-T2CEP-098 in a binary system

    Full text link
    We present the results of a study of the type II Cepheid (Ppuls=4.974dP_{puls} = 4.974 d) in the eclipsing binary system OGLE-LMC-T2CEP-098 (Porb=397.2dP_{orb} = 397.2 d). The Cepheid belongs to the peculiar W Vir group, for which the evolutionary status is virtually unknown. It is the first single-lined system with a pulsating component analyzed using the method developed by Pilecki et al. (2013). We show that the presence of a pulsator makes it possible to derive accurate physical parameters of the stars even if radial velocities can be measured for only one of the components. We have used four different methods to limit and estimate the physical parameters, eventually obtaining precise results by combining pulsation theory with the spectroscopic and photometric solutions. The Cepheid radius, mass and temperature are 25.3±0.2R25.3 \pm 0.2 R_\odot, 1.51±0.09M1.51 \pm 0.09 M_\odot and 5300±100K5300 \pm 100 K, respectively, while its companion has similar size (26.3R26.3 R_\odot), but is more massive (6.8M6.8 M_\odot) and hotter (9500K9500 K). Our best estimate for the p-factor of the Cepheid is 1.30±0.031.30 \pm 0.03. The mass, position on the period-luminosity diagram, and pulsation amplitude indicate that the pulsating component is very similar to the Anomalous Cepheids, although it has a much longer period and is redder in color. The very unusual combination of the components suggest that the system has passed through a mass transfer phase in its evolution. More complicated internal structure would then explain its peculiarity.Comment: 23 pages, 17 figures, accepted for publication in Ap

    33.8 GHz CCS Survey of Molecular Cores in Dark Clouds

    Get PDF
    We have conducted a survey of the CCS JN=3221J_N = 3_2-2_1 line toward 11 dark clouds and star-forming regions at 30 arcsec spatial resolution and 0.054 km/s velocity resolution. CCS was only detected in quiescent clouds, not in active star-forming regions. The CCS distribution shows remarkable clumpy structure, and 25 clumps are identified in 7 clouds. Seven clumps with extremely narrow nonthermal linewidths < 0.1 km/s are among the most quiescent clumps ever found. The CCS clumps tend to exist around the higher density regions traced by NH_3 emission or submillimeter continuum sources, and the distribution is not spherically symmetric. Variation of the CCS abundance was suggested as an indicator of the evolutionary status of star formation. However, we can only find a weak correlation between N(CCS) and nH2,virn_{H_2,vir}. The velocity distributions of CCS clouds reveal that a systematic velocity pattern generally exists. The most striking feature in our data is a ring structure in the position-velocity diagram of L1544 with an well-resolved inner hole of 0.04 pc x 0.13 km/s and an outer boundary of 0.16 pc x 0.55 km/s. This position-velocity structure clearly indicates an edge-on disk or ring geometry, and it can be interpreted as a collapsing disk with an infall velocity \gtrsim 0.1 km/s and a rotational velocity less than our velocity resolution. Nonthermal linewidth distribution is generally coherent in CCS clouds, which could be evidence for the termination of Larson's Law at small scales, \sim 0.1 pc.Comment: 21 pages, 25 ostscript figures, accepted for publication in the Supplement Series of the Astrophysical Journal (May 2000

    Why do drivers become safer over the first three months of driving? A longitudinal qualitative study

    Get PDF
    Drivers are at high crash risk when they begin independent driving, with liability decreasing steeply over the first three months. Their behavioural development, and other changes underlying improved safety are not well understood. We adopted an innovative longitudinal qualitative design, with thirteen newly qualified drivers completing a total of 36 semi-structured interviews, one, two and three months after acquiring a full UK driving license. The interviews probed high-risk factors for new drivers, as well as allowing space for generating novel road safety issues. Analysis adopted a dual deductive and inductive interpretative thematic approach, identifying three super-ordinate themes: (1) Improvements in car control skills and situation awareness; (2) A reduction in the thrill of taking risks when driving against a background of generally increasing driving speed; (3) Early concerns about their social status in the eyes of other road users during the early stages of driving, which may put pressure on them to drive faster than they felt comfortable with. The study provides important new leads towards understanding how novice driving becomes safer over the first few months of driving, including how well-studied concepts of driving skill and style may change during development of independent driving, and a focus on the less rigorously studied concept of social status

    The mediating effect of task presentation on collaboration and children's acquisition of scientific reasoning

    Get PDF
    There has been considerable research concerning peer interaction and the acquisition of children's scientific reasoning. This study investigated differences in collaborative activity between pairs of children working around a computer with pairs of children working with physical apparatus and related any differences to the development of children's scientific reasoning. Children aged between 9 and 10 years old (48 boys and 48 girls) were placed into either same ability or mixed ability pairs according to their individual, pre-test performance on a scientific reasoning task. These pairs then worked on either a computer version or a physical version of Inhelder and Piaget's (1958) chemical combination task. Type of presentation was found to mediate the nature and type of collaborative activity. The mixed-ability pairs working around the computer talked proportionally more about the task and management of the task; had proportionally more transactive discussions and used the record more productively than children working with the physical apparatus. Type of presentation was also found to mediated children's learning. Children in same ability pairs who worked with the physical apparatus improved significantly more than same ability pairs who worked around the computer. These findings were partially predicted from a socio-cultural theory and show the importance of tools for mediating collaborative activity and collaborative learning

    Distinct Effects on Diversifying Selection by Two Mechanisms of Immunity Against Streptococcus pneumoniae

    Get PDF
    Antigenic variation to evade host immunity has long been assumed to be a driving force of diversifying selection in pathogens. Colonization by Streptococcus pneumoniae, which is central to the organism's transmission and therefore evolution, is limited by two arms of the immune system: antibody- and T cell- mediated immunity. In particular, the effector activity of CD4+ TH17 cell mediated immunity has been shown to act in trans, clearing co-colonizing pneumococci that do not bear the relevant antigen. It is thus unclear whether TH17 cell immunity allows benefit of antigenic variation and contributes to diversifying selection. Here we show that antigen-specific CD4+ TH17 cell immunity almost equally reduces colonization by both an antigen-positive strain and a co-colonized, antigen-negative strain in a mouse model of pneumococcal carriage, thus potentially minimizing the advantage of escape from this type of immunity. Using a proteomic screening approach, we identified a list of candidate human CD4+ TH17 cell antigens. Using this list and a previously published list of pneumococcal Antibody antigens, we bioinformatically assessed the signals of diversifying selection among the identified antigens compared to non-antigens. We found that Antibody antigen genes were significantly more likely to be under diversifying selection than the TH17 cell antigen genes, which were indistinguishable from non-antigens. Within the Antibody antigens, epitopes recognized by human antibodies showed stronger evidence of diversifying selection. Taken together, the data suggest that TH17 cell-mediated immunity, one form of T cell immunity that is important to limit carriage of antigen-positive pneumococcus, favors little diversifying selection in the targeted antigen. The results could provide new insight into pneumococcal vaccine design
    corecore