6,985 research outputs found
Asymptotic Behavior of Inflated Lattice Polygons
We study the inflated phase of two dimensional lattice polygons with fixed
perimeter and variable area, associating a weight to a
polygon with area and bends. For convex and column-convex polygons, we
show that , where , and . The
constant is found to be the same for both types of polygons. We argue
that self-avoiding polygons should exhibit the same asymptotic behavior. For
self-avoiding polygons, our predictions are in good agreement with exact
enumeration data for J=0 and Monte Carlo simulations for . We also
study polygons where self-intersections are allowed, verifying numerically that
the asymptotic behavior described above continues to hold.Comment: 7 page
The Role of Gas in the Merging of Massive Black Holes in Galactic Nuclei. I. Black Hole Merging in a Spherical Gas Cloud
Using high-resolution SPH numerical simulations, we investigate the effects
of gas on the inspiral and merger of a massive black hole binary. This study is
motivated by both observational and theoretical work that indicate the presence
of large amounts of gas in the central regions of merging galaxies. N-body
simulations have shown that the coalescence of a massive black hole binary
eventually stalls in a stellar background. However, our simulations suggest
that the massive black hole binary will finally merge if it is embedded in a
gaseous background. Here we present results in which the gas is assumed to be
initially spherical with a relatively smooth distribution. In the early
evolution of the binary, the separation dimishes due to the gravitational drag
exerted by the background gas. In the later stages, when the binary dominates
the gravitational potential in its vicinity, the medium responds by forming an
ellipsoidal density enhancement whose axis lags behind the binary axis, and
this offset produces a torque on the binary that causes continuing loss of
angular momentum and is able to reduce the binary separation to distances where
gravitational radiation is efficient. Assuming typical parameters from
observations of Ultra Luminous Infrared Galaxies, we predict that a black hole
binary will merge within yrs; therefore these results imply that in a
merger of gas-rich galaxies, any massive central black holes will coalescence
soon after the galaxies merge. Our work thus supports scenarios of massive
black hole evolution and growth where hierarchical merging plays an important
role. The final coalescence of the black holes leads to gravitational radiation
emission that would be detectable up to high redshift by LISA. We show that
similar physical effects are important for the formation of close binary stars.Comment: 38 pages, 14 figures, submitted to Ap
Dissociation cross sections of ground-state and excited charmonia with light mesons in the quark model
We present numerical results for the dissociation cross sections of
ground-state, orbitally- and radially-excited charmonia in collisions with
light mesons. Our results are derived using the nonrelativistic quark model, so
all parameters are determined by fits to the experimental meson spectrum.
Examples of dissociation into both exclusive and inclusive final states are
considered. The dissociation cross sections of several C=(+) charmonia may be
of considerable importance for the study of heavy ion collisions, since these
states are expected to be produced more copiously than the J/psi. The relative
importance of the productions of ground-state and orbitally-excited charmed
mesons in a pion-charmonium collision is demonstrated through the -dependent charmonium dissociation cross sections.Comment: 9 pages, 8 figure
Self-avoiding walks and polygons on the triangular lattice
We use new algorithms, based on the finite lattice method of series
expansion, to extend the enumeration of self-avoiding walks and polygons on the
triangular lattice to length 40 and 60, respectively. For self-avoiding walks
to length 40 we also calculate series for the metric properties of mean-square
end-to-end distance, mean-square radius of gyration and the mean-square
distance of a monomer from the end points. For self-avoiding polygons to length
58 we calculate series for the mean-square radius of gyration and the first 10
moments of the area. Analysis of the series yields accurate estimates for the
connective constant of triangular self-avoiding walks, ,
and confirms to a high degree of accuracy several theoretical predictions for
universal critical exponents and amplitude combinations.Comment: 24 pages, 6 figure
Phase-Locking of Vortex Lattices Interacting with Periodic Pinning
We examine Shapiro steps for vortex lattices interacting with periodic
pinning arrays driven by AC and DC currents. The vortex flow occurs by the
motion of the interstitial vortices through the periodic potential generated by
the vortices that remain pinned at the pinning sites. Shapiro steps are
observed for fields B_{\phi} < B < 2.25B_{\phi} with the most pronouced steps
occuring for fields where the interstitial vortex lattice has a high degree of
symmetry. The widths of the phase-locked current steps as a function of the
magnitude of the AC driving are found to follow a Bessel function in agreement
with theory.Comment: 5 pages 5 postscript figure
PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation
Nanomaterials have been actively pursued for biological and medical
applications in recent years. Here, we report the synthesis of several new
poly(ethylene glycol) grafted branched-polymers for functionalization of
various nanomaterials including carbon nanotubes, gold nanoparticles (NP) and
gold nanorods (NRs), affording high aqueous solubility and stability for these
materials. We synthesize different surfactant polymers based upon
poly-(g-glutamic acid) (gPGA) and poly(maleic anhydride-alt-1-octadecene)
(PMHC18). We use the abundant free carboxylic acid groups of gPGA for attaching
lipophilic species such as pyrene or phospholipid, which bind to nanomaterials
via robust physisorption. Additionally, the remaining carboxylic acids on gPGA
or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing
extended hydrophilic groups, affording polymeric amphiphiles. We show that
single-walled carbon nanotubes (SWNTs), Au NPs and NRs functionalized by the
polymers exhibit high stability in aqueous solutions at different pHs, at
elevated temperatures and in serum. Morever, the polymer-coated SWNTs exhibit
remarkably long blood circulation (t1/2 22.1 h) upon intravenous injection into
mice, far exceeding the previous record of 5.4 h. The ultra-long blood
circulation time suggests greatly delayed clearance of nanomaterials by the
reticuloendothelial system (RES) of mice, a highly desired property for in vivo
applications of nanomaterials, including imaging and drug delivery
Multi-wavelength analysis of high energy electrons in solar flares: a case study of August 20, 2002 flare
A multi-wavelength spatial and temporal analysis of solar high energy
electrons is conducted using the August 20, 2002 flare of an unusually flat
(gamma=1.8) hard X-ray spectrum. The flare is studied using RHESSI, Halpha,
radio, TRACE, and MDI observations with advanced methods and techniques never
previously applied in the solar flare context. A new method to account for
X-ray Compton backscattering in the photosphere (photospheric albedo) has been
used to deduce the primary X-ray flare spectra. The mean electron flux
distribution has been analysed using both forward fitting and model independent
inversion methods of spectral analysis. We show that the contribution of the
photospheric albedo to the photon spectrum modifies the calculated mean
electron flux distribution, mainly at energies below 100 keV. The positions of
the Halpha emission and hard X-ray sources with respect to the current-free
extrapolation of the MDI photospheric magnetic field and the characteristics of
the radio emission provide evidence of the closed geometry of the magnetic
field structure and the flare process in low altitude magnetic loops. In
agreement with the predictions of some solar flare models, the hard X-ray
sources are located on the external edges of the Halpha emission and show
chromospheric plasma heated by the non-thermal electrons. The fast changes of
Halpha intensities are located not only inside the hard X-ray sources, as
expected if they are the signatures of the chromospheric response to the
electron bombardment, but also away from them.Comment: 26 pages, 9 figures, accepted to Solar Physic
A New Class of Changing-Look LINERs
We report the discovery of six active galactic nuclei (AGN) caught "turning
on" during the first nine months of the Zwicky Transient Facility (ZTF) survey.
The host galaxies were classified as LINERs by weak narrow forbidden line
emission in their archival SDSS spectra, and detected by ZTF as nuclear
transients. In five of the cases, we found via follow-up spectroscopy that they
had transformed into broad-line AGN, reminiscent of the changing-look LINER
iPTF 16bco. In one case, ZTF18aajupnt/AT2018dyk, follow-up HST UV and
ground-based optical spectra revealed the transformation into a narrow-line
Seyfert 1 (NLS1) with strong [Fe VII, X, XIV] and He II 4686 coronal lines.
Swift monitoring observations of this source reveal bright UV emission that
tracks the optical flare, accompanied by a luminous soft X-ray flare that peaks
~60 days later. Spitzer follow-up observations also detect a luminous
mid-infrared flare implying a large covering fraction of dust. Archival light
curves of the entire sample from CRTS, ATLAS, and ASAS-SN constrain the onset
of the optical nuclear flaring from a prolonged quiescent state. Here we
present the systematic selection and follow-up of this new class of
changing-look LINERs, compare their properties to previously reported
changing-look Seyfert galaxies, and conclude that they are a unique class of
transients well-suited to test the uncertain physical processes associated with
the LINER accretion state.Comment: Submitted to ApJ, 31 pages, 17 Figures (excluding Appendix due to
file size constraints but will be available in electronic version
- …
