400 research outputs found
Non-Iterative Characteristics Analysis for High-Pressure Ramp Loading
In the canonical ramp compression experiment, a smoothly-increasing load is
applied to the surface of the sample, and the particle velocity history is
measured at two or more different distances into the sample, at interfaces
where the surface of the sample can be probed. The velocity histories are used
to deduce a stress-density relation, usually using iterative Lagrangian
analysis to account for the perturbing effect of the impedance mismatch at the
interface. In that technique, a stress- density relation is assumed in order to
correct for the perturbation, and is adjusted until it becomes consistent with
the deduced stress-density relation. This process is subject to the usual
difficulties of nonlinear optimization, such as the existence of local minima
(sensitivity to the initial guess), possible failure to converge, and
relatively large computational effort. We show that, by considering the
interaction of successive characteristics reaching the interfaces, the
stress-density relation can be deduced directly by recursion rather than
iteration. This calculation is orders of magnitude faster than iterative
analysis, and does not require an initial guess. Direct recursion may be less
suitable for very noisy data, but it was robust when applied to trial data. The
stress-density relation deduced was identical to the result from iterative
Lagrangian analysis
On the Properties of Plastic Ablators in Laser-Driven Material Dynamics Experiments
Radiation hydrodynamics simulations were used to study the effect of plastic
ablators in laser-driven shock experiments. The sensitivity to composition and
equation of state was found to be 5-10% in ablation pressure. As was found for
metals, a laser pulse of constant irradiance gave a pressure history which
decreased by several percent per nanosecond. The pressure history could be made
more constant by adjusting the irradiance history. The impedance mismatch with
the sample gave an increase o(100%) in the pressure transmitted into the
sample, for a reduction of several tens of percent in the duration of the peak
load applied to the sample, and structured the release history by adding a
release step to a pressure close to the ablation pressure. Algebraic relations
were found between the laser pulse duration, the ablator thickness, and the
duration of the peak pressure applied to the sample, involving quantities
calculated from the equations of state of the ablator and sample using shock
dynamics.Comment: Typos fixe
Shock formation and the ideal shape of ramp compression waves
We derive expressions for shock formation based on the local curvature of the
flow characteristics during dynamic compression. Given a specific ramp adiabat,
calculated for instance from the equation of state for a substance, the ideal
nonlinear shape for an applied ramp loading history can be determined. We
discuss the region affected by lateral release, which can be presented in
compact form for the ideal loading history. Example calculations are given for
representative metals and plastic ablators. Continuum dynamics (hydrocode)
simulations were in good agreement with the algebraic forms. Example
applications are presented for several classes of laser-loading experiment,
identifying conditions where shocks are desired but not formed, and where long
duration ramps are desired
Electrical conduction by interface states in semiconductor heterojunctions
peer reviewedaudience: researcher, professionalElectrical conduction in semiconductor heterojunctions containing defect states in the interface region is studied. As the classical drift-diffusion mechanism cannot in any case explain electrical conduction in semiconductor heterojunctions, tunnelling involving interface states is often considered as a possible conduction path. A theoretical treatment is made where defect states in the interface region with a continuous energy distribution are included. Electrical conduction through this defect band then allows the transit of electrons from the conduction band of one semiconductor to the valence band of the second component. The analysis is initiated by electrical measurements on n-CdS/p-CdTe heterojunctions obtained by chemical vapour deposition of CdS on (111) oriented CdTe single crystals, for which current--voltage and capacitance--frequency results are shown. The theoretical analysis is based on the numerical resolution of Poisson's equation and the continuity equations of electrons, holes and defect states, where a current component corresponding to the defect band conduction is explicitly included. Comparison with the experimental curves shows that this formalism yields an efficient tool to model the conduction process through the interface region. It also allows us to determine critical values of the physical parameters when a particular step in the conduction mechanism becomes dominant
Evaluation of the limitations and methods to improve rapid phage-based detection of viable Mycobacterium avium subsp. paratuberculosis in the blood of experimentally infected cattle
Background
Disseminated infection and bacteraemia is an underreported and under-researched aspect of Johne’s disease. This is mainly due to the time it takes for Mycobacterium avium subsp. paratuberculosis (MAP) to grow and lack of sensitivity of culture. Viable MAP cells can be detected in the blood of cattle suffering from Johne’s disease within 48 h using peptide-mediated magnetic separation (PMMS) followed by bacteriophage amplification. The aim of this study was to demonstrate the first detection of MAP in the blood of experimentally exposed cattle using the PMMS-bacteriophage assay and to compare these results with the immune response of the animal based on serum ELISA and shedding of MAP by faecal culture.
Results
Using the PMMS-phage assay, seven out of the 19 (37 %) MAP-exposed animals that were tested were positive for viable MAP cells although very low numbers of MAP were detected. Two of these animals were positive by faecal culture and one was positive by serum ELISA. There was no correlation between PMMS-phage assay results and the faecal and serum ELISA results. None of the control animals (10) were positive for MAP using any of the four detection methods. Investigations carried out into the efficiency of the assay; found that the PMMS step was the limiting factor reducing the sensitivity of the phage assay. A modified method using the phage assay directly on isolated peripheral blood mononuclear cells (without PMMS) was found to be superior to the PMMS isolation step.
Conclusions
This proof of concept study has shown that viable MAP cells are present in the blood of MAP-exposed cattle prior to the onset of clinical signs. Although only one time point was tested, the ability to detect viable MAP in the blood of subclinically infected animals by the rapid phage-based method has the potential to increase the understanding of the pathogenesis of Johne’s disease progression by warranting further research on the presence of MAP in blood
Cluster randomised trial of a tailored intervention to improve the management of overweight and obesity in primary care in England
Background: Tailoring is a frequent component of approaches for implementing clinical practice guidelines, although evidence on how to maximise the effectiveness of tailoring is limited. In England, overweight and obesity are common, and national guidelines have been produced by the National Institute for Health and Care Excellence. However, the guidelines are not routinely followed in primary care. Methods: A tailored implementation intervention was developed following an analysis of the determinants of practice influencing the implementation of the guidelines on obesity and the selection of strategies to address the determinants. General practices in the East Midlands of England were invited to take part in a cluster randomised controlled trial of the intervention. The primary outcome measure was the proportion of overweight or obese patients offered a weight loss intervention. Secondary outcomes were the proportions of patients with (1) a BMI or waist circumference recorded, (2) record of lifestyle assessment, (3) referred to weight loss services, and (4) any change in weight during the study period. We also assessed the mean weight change over the study period. Follow-up was for 9 months after the intervention. A process evaluation was undertaken, involving interviews of samples of participating health professionals. Results: There were 16 general practices in the control group, and 12 in the intervention group. At follow-up, 15. 08 % in the control group and 13.19 % in the intervention group had been offered a weight loss intervention, odds ratio (OR) 1.16, 95 % confidence interval (CI) (0.72, 1.89). BMI/waist circumference measurement 42.71 % control, 39.56 % intervention, OR 1.15 (CI 0.89, 1.48), referral to weight loss services 5.10 % control, 3.67 % intervention, OR 1.45 (CI 0.81, 2.63), weight management in the practice 9.59 % control, 8.73 % intervention, OR 1.09 (CI 0.55, 2.15), lifestyle assessment 23.05 % control, 23.86 % intervention, OR 0.98 (CI 0.76, 1.26), weight loss of at least 1 kg 42.22 % control, 41.65 % intervention, OR 0.98 (CI 0.87, 1.09). Health professionals reported the interventions as increasing their confidence in managing obesity and providing them with practical resources. Conclusions: The tailored intervention did not improve the implementation of the guidelines on obesity, despite systematic approaches to the identification of the determinants of practice. The methods of tailoring require further development to ensure that interventions target those determinants that most influence implementation
Advanced Fluorescence Microscopy Techniques-FRAP, FLIP, FLAP, FRET and FLIM
Fluorescence microscopy provides an efficient and unique approach to study fixed and living cells because of its versatility, specificity, and high sensitivity. Fluorescence microscopes can both detect the fluorescence emitted from labeled molecules in biological samples as images or photometric data from which intensities and emission spectra can be deduced. By exploiting the characteristics of fluorescence, various techniques have been developed that enable the visualization and analysis of complex dynamic events in cells, organelles, and sub-organelle components within the biological specimen. The techniques described here are fluorescence recovery after photobleaching (FRAP), the related fluorescence loss in photobleaching (FLIP), fluorescence localization after photobleaching (FLAP), Forster or fluorescence resonance energy transfer (FRET) and the different ways how to measure FRET, such as acceptor bleaching, sensitized emission, polarization anisotropy, and fluorescence lifetime imaging microscopy (FLIM). First, a brief introduction into the mechanisms underlying fluorescence as a physical phenomenon and fluorescence, confocal, and multiphoton microscopy is given. Subsequently, these advanced microscopy techniques are introduced in more detail, with a description of how these techniques are performed, what needs to be considered, and what practical advantages they can bring to cell biological research
- …
