39 research outputs found
Comparison of performance-based measures among native Japanese, Japanese-Americans in Hawaii and Caucasian women in the United States, ages 65 years and over: a cross-sectional study
BACKGROUND: Japanese (both in Japan and Hawaii) have a lower incidence of falls and of hip fracture than North American and European Caucasians, but the reasons for these differences are not clear. SUBJECTS AND METHODS: A cross-sectional study. We compared neuromuscular risk factors for falls using performance-based measures (chair stand time, usual and rapid walking speed, and grip strength) among 163 Japanese women in Japan, 681 Japanese-American women in Hawaii and 9403 Caucasian women in the United States aged 65 years and over. RESULTS: After adjusting for age, the Caucasian women required about 40% more time to complete 5 chair stands than either group of Japanese. Walking speed was about 10% slower among Caucasians than native Japanese, whereas Japanese-American women in Hawaii walked about 11% faster than native Japanese. Grip strength was greatest in Japan, which may reflect the rural farming district that this sample was drawn from. Additional adjustment for height, weight or body mass index increased the adjusted means of chair stand time and grip strength among Japanese, but the differences remained significant. CONCLUSIONS: Both native Japanese and Japanese-American women in Hawaii performed better than Caucasians on chair stand time and walking speed tests, and native Japanese had greater grip strength than Japanese in Hawaii and Caucasians. The biological implications of these differences in performance are uncertain, but may be useful in planning future comparisons between populations
Antifracture Efficacy of Antiresorptive Agents Are Related to Changes in Bone Density
There is a current debate about the extent to which antifracture efficacy of antiresorptive drugs are related to changes in bone mineral density (BMD). In vitro studies show that most of the variability in bone strength is related to BMD, and prospective studies have shown that low BMD is an important predictor of fracture risk. It seems that higher levels of bone turnover are also associated with increased fracture risk. Over the short term, a reduction in activation frequency or resorption depth would lead to fewer (and/or shallower) resorption sites and refilling of existing sites initially. There is also evidence that inhibiting resorption allows bone to respond to mechanical demands, preferentially thickening critical trabeculae, and this may help compensate for reduced connectivity. Each of these mechanisms would increase BMD and would disproportionately improve bone strength. Over the long term, maintaining bone mass and preventing loss of structural elements would result in progressively greater differences in BMD and fracture risk over time, relative to untreated women. The conceptual model predicts that both the short- and long-term antifracture efficacy of antiresorptive drugs will depend on the extent to which treatment can increase and maintain BMD. To examine this issue, we compiled data from clinical trials of antiresorptive agents and plotted the relative risk of vertebral fractures against the average change in BMD for each trial. The confidence intervals are large for individual trials, and there was substantial variability in antifracture efficacy at any given level of change in BMD. Overall, however, trials that reported larger increases in BMD tended to observe greater reductions in vertebral fracture risk. Poisson regression was used to quantify this relationship. The model predicts that treatments that increase spine BMD by 8% would reduce risk by 54%; most of the total effect of treatment was explained by the 8% increase in BMD (41% risk reduction). These findings are consistent with the short-term predictions of the conceptual model and with reports from randomized trials. The small but significant reductions in risk that were not explained by measurable changes in BMD might be related to publication bias, measurement errors, or limitations of current BMD technology.</jats:p
