10,167 research outputs found

    THE STRUCTURE OF A NEVER REGULATED LESS-THAN-TRUCKLOAD MARKET IN THE UNITED STATES

    Get PDF
    The structure of the never-regulated, less-than-truckload transport market for Florida ornamentals is examined using concentration ratios, and the Hirchman-Herfindahl, Rosenbluth, and E Indices. The results indicate that this market is not highly concentrated relative to all U.S. markets or to regulated trucking markets. This suggests that the long run structure of the trucking markets where regulations have been relaxed will not be highly concentrated and that economies of size may not be large. It was also found that, despite characteristics favorable to own-account carriage, it plays a minor role in ornamentals transportation relative to in regulated markets. This is consistent with the hypothesis that avoidance of problems and costs related to regulated carriage can be an incentive for firms to adopt own-account carriage.Marketing,

    Reactor for producing large particles of materials from gases

    Get PDF
    A method and apparatus is disclosed for producing large particles of material from gas, or gases, containing the material (e.g., silicon from silane) in a free-space reactor comprised of a tube (20) and controlled furnace (25). A hot gas is introduced in the center of the reactant gas through a nozzle (23) to heat a quantity of the reactant gas, or gases, to produce a controlled concentration of seed particles (24) which are entrained in the flow of reactant gas, or gases. The temperature profile (FIG. 4) of the furnace is controlled for such a slow, controlled rate of reaction that virtually all of the material released condenses on seed particles and new particles are not nucleated in the furnace. A separate reactor comprised of a tube (33) and furnace (30) may be used to form a seed aerosol which, after passing through a cooling section (34) is introduced in the main reactor tube (34) which includes a mixer (36) to mix the seed aerosol in a controlled concentration with the reactant gas or gases

    Infrared Dynamics of a Large N QCD Model, the Massless String Sector and Mesonic Spectra

    Full text link
    A consistency check for any UV complete model for large N QCD should be, among other things, the existence of a well-defined vector and scalar mesonic spectra. In this paper, we use our UV complete model in type IIB string theory to study the IR dynamics and use this to predict the mesonic spectra in the dual type IIA side. The advantage of this approach is two-fold: not only will this justify the consistency of the supergravity approach, but it will also give us a way to compare the IR spectra and the model with the ones proposed earlier by Sakai and Sugimoto. Interestingly, the spectra coming from the massless stringy sector are independent of the UV physics, although the massive string sector may pose certain subtleties regarding the UV contributions as well as the mappings to actual QCD. Additionally, we find that a component of the string landscape enters the picture: there are points in the landscape where the spectra can be considerably improved over the existing results in the literature. These points in the landscape in-turn also determine certain background supergravity components and fix various pathologies that eventually lead to a consistent low energy description of the theory.Comment: 47 pages, 7 pdf figures, 24 tables, JHEP format; Detailed mathematica file of the computations is available on request; Version 2: Text elaborated, typos corrected, a new appendix added to discuss the regimes of validity, and a word in the abstract changed. Results unchanged. Final version to appear in JHE

    Effect of de-correlating turbulence on the low frequency decay of jet-surface interaction noise in sub-sonic unheated air jets using a CFD-based approach

    Get PDF
    In this paper we extend the Rapid-distortion theory (RDT)-based model derived by Goldstein, Afsar & Leib (J. Fluid Mech., vol. 736, pp. 532-569, 2013) for the sound generated by the interaction of a large-aspect-ratio rectangular jet with the trailing edge of a flat plate to include a more realistic upstream turbulence spectrum that possess a de-correlation (i.e. negative dip) in its space-time structure and use results from three-dimensional Reynolds-Averaged Navier-Stokes (RANS) solutions to determine the mean flow, turbulent kinetic energy and turbulence length & time scales. Since the interaction noise dominates the low-frequency portion of the spectrum, we use an appropriate asymptotic approximation for the Rayleigh equation Green’s function, which enters the analysis, based on a two-dimensional mean flow representation for the jet. We use the model to predict jet-surface interaction noise for a range of subsonic acoustic Mach number jets, nozzle aspect ratios, streamwise and transverse trailing-edge locations and compare them with experimental data. The RANS meanflow computations are also compared with flow data for selected cases to assess their validity. We find that finite de-correlation in the turbulence spectrum increases the low-frequency algebraic decay (the low-frequency “roll-off”) of the acoustic spectrum with angular frequency to give a model that has a pure dipole frequency scaling. This gives better agreement with noise data compared to Goldstein et al. (2013) for Strouhal numbers less than the peak jet-surface interaction noise. For example, through sensitivity analysis we find that there is a difference of 10 dB at the lowest frequency for which data exists (relative to a model without de-correlation effects included) for the highest acoustic Mach number case. Secondly, our results for the planar flow theory provide a first estimate of the low-frequency amplification due to the jet-surface interaction for moderate aspect ratio nozzles when RANS meanflow quantities are used appropriately. This work will hopefully add to noise prediction efforts for aircraft configurations in which the exhaust systems are tightly integrated with the airframe
    corecore