840 research outputs found

    BBC3 (PUMA) regulates developmental apoptosis but not axonal injury induced death in the retina

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Naturally occurring apoptosis is a developmental process that shapes the retina by eliminating overproduced neurons. In the absence of the proapoptotic Bcl-2 family member BAX, developmental apoptosis in the retina is disrupted and extra neurons survive. It is unknown how BAX is activated or if this regulation varies between neuronal types and subtypes. Since the Bcl-2 family members BIM, BID, and BBC3 (PUMA) are powerful direct activators of BAX, we used mice deficient for each of these genes to investigate their importance in developmental apoptosis.</p> <p>Results</p> <p><it>Bax </it>deficient mice have an increase in retinal ganglion cells (RGCs), bipolar cells and dopaminergic amacrine cells, but not photoreceptors, horizontal cells or cholinergic amacrine cells. The retinas of adult <it>Bim </it>and <it>Bid </it>deficient mice appeared to have no increase in any retinal cell type. <it>Bbc3 </it>deficient mice, either homozygous or heterozygous for a null allele of <it>Bbc3</it>, had an increase in the same cell types as <it>Bax </it>deficient mice. An analogous result may occur in the brain where, similar to <it>Bax </it>deficient mice, <it>Bbc3 </it>deficient mice have a larger gross brain weight compared to wild type mice. In contrast to its developmental role, BBC3 did not appear to be a primary factor in BAX-dependent axonal injury induced neurodegeneration in adult RGCs.</p> <p>Conclusion</p> <p>The regulation of BAX activation in the retina appears to be complex, dependent on the developmental stage of the animal, the nature of the insult and even the type of neuron.</p

    KLF9 and JNK3 Interact to Suppress Axon Regeneration in the Adult CNS

    Get PDF
    Neurons in the adult mammalian CNS decrease in intrinsic axon growth capacity during development in concert with changes in Krüppel-like transcription factors (KLFs). KLFs regulate axon growth in CNS neurons including retinal ganglion cells (RGCs). Here, we found that knock-down of KLF9, an axon growth suppressor that is normally upregulated 250-fold in RGC development, promotes long-distance optic nerve regeneration in adult rats of both sexes. We identified a novel binding partner, MAPK10/JNK3 kinase, and found that JNK3 (c-Jun N-terminal kinase 3) is critical for KLF9\u27s axon-growth-suppressive activity. Interfering with a JNK3-binding domain or mutating two newly discovered serine phosphorylation acceptor sites, Ser106 and Ser110, effectively abolished KLF9\u27s neurite growth suppression in vitro and promoted axon regeneration in vivo. These findings demonstrate a novel, physiologic role for the interaction of KLF9 and JNK3 in regenerative failure in the optic nerve and suggest new therapeutic strategies to promote axon regeneration in the adult CNS

    Vascular derived endothelin receptor A controls endothelin-induced retinal ganglion cell death.

    Get PDF
    Endothelin (EDN, also known as ET) signaling has been suggested to be an important mediator of retinal ganglion cell (RGC) death in glaucoma. Antagonism of EDN receptors (EDNRA and EDNRB, also known as ET-A and ET-B) prevented RGC death in mouse models of chronic ocular hypertension, and intravitreal injection of EDN ligand was sufficient to drive RGC death. However, it remains unclear which cell types EDN ligands directly affect to elicit RGC death. Multiple cell types in the retina and optic nerve express EDNRA and EDNRB and thus could respond to EDN ligands in the context of glaucoma. Here, we systematically deleted Edn receptors from specific cell types to identify the critical EDN receptor mediating RGC death in vivo. Deletion of both Ednra and Ednrb from retinal neurons (including RGCs) and macroglia did not prevent RGC loss after exposure to EDN1 ligands, suggesting EDN1 ligands cause RGC death via an indirect mechanism involving a secondary cell type. Deletion of Ednra from the full body, and then specifically from vascular mural cells, prevented EDN1-induced vasoconstriction and RGC death. Together, these data suggest EDN ligands cause RGC death via a mechanism initiated by vascular mural cells. It is possible RGC death is a consequence of vascular mural cell-induced vasoconstriction and its pathological sequelae. These results highlight the potential importance of neurovascular dysfunction in glaucoma

    Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice

    Get PDF
    Using a variety of double and triple labeling techniques, we have reevaluated the death of retinal neurons in a mouse model of hereditary glaucoma. Cell-specific markers and total neuron counts revealed no cell loss in any retinal neurons other than the ganglion cells. Within the limits of our ability to define cell types, no group of ganglion cells was especially vulnerable or resistant to degeneration. Retrograde labeling and neurofilament staining showed that axonal atrophy, dendritic remodeling, and somal shrinkage (at least of the largest cell types) precedes ganglion cell death in this glaucoma model. Regions of cell death or survival radiated from the optic nerve head in fan-shaped sectors. Collectively, the data suggest axon damage at the optic nerve head as an early lesion, and damage to axon bundles would cause this pattern of degeneration. However, the architecture of the mouse eye seems to preclude a commonly postulated source of mechanical damage within the nerve head

    Recommendations for a national agenda to substantially reduce cervical cancer

    Get PDF
    PURPOSE: Prophylactic human papillomavirus (HPV) vaccines and new HPV screening tests, combined with traditional Pap test screening, provide an unprecedented opportunity to greatly reduce cervical cancer in the USA. Despite these advances, thousands of women continue to be diagnosed with and die of this highly preventable disease each year. This paper describes the initiatives and recommendations of national cervical cancer experts toward preventing and possibly eliminating this disease. METHODS: In May 2011, Cervical Cancer-Free America, a national initiative, convened a cervical cancer summit in Washington, DC. Over 120 experts from the public and private sector met to develop a national agenda for reducing cervical cancer morbidity and mortality in the USA. RESULTS: Summit participants evaluated four broad challenges to reducing cervical cancer: (1) low use of HPV vaccines, (2) low use of cervical cancer screening, (3) screening errors, and (4) lack of continuity of care for women diagnosed with cervical cancer. The summit offered 12 concrete recommendations to guide future national and local efforts toward this goal. CONCLUSIONS: Cervical cancer incidence and mortality can be greatly reduced by better deploying existing methods and systems. The challenge lies in ensuring that the array of available prevention options are accessible and utilized by all age-appropriate women-particularly minority and underserved women who are disproportionately affected by this disease. The consensus was that cervical cancer can be greatly reduced and that prevention efforts can lead the way towards a dramatic reduction in this preventable disease in our country

    Endothelin 1-induced retinal ganglion cell death is largely mediated by JUN activation.

    Get PDF
    Glaucoma is a neurodegenerative disease characterized by loss of retinal ganglion cells (RGCs), the output neurons of the retina. Multiple lines of evidence show the endothelin (EDN, also known as ET) system is important in glaucomatous neurodegeneration. To date, the molecular mechanisms within RGCs driving EDN-induced RGC death have not been clarified. The pro-apoptotic transcription factor JUN (the canonical target of JNK signaling) and the endoplasmic reticulum stress effector and transcription factor DNA damage inducible transcript 3 (DDIT3, also known as CHOP) have been shown to act downstream of EDN receptors. Previous studies demonstrated that JUN and DDIT3 were important regulators of RGC death after glaucoma-relevant injures. Here, we characterized EDN insult in vivo and investigated the role of JUN and DDIT3 in EDN-induced RGC death. To accomplish this, EDN1 ligand was intravitreally injected into the eyes of wildtype, Six3-cre+Junfl/fl (Jun-/-), Ddit3 null (Ddit3-/-), and Ddit3-/-Jun-/- mice. Intravitreal EDN1 was sufficient to drive RGC death in vivo. EDN1 insult caused JUN activation in RGCs, and deletion of Jun from the neural retina attenuated RGC death after EDN insult. However, deletion of Ddit3 did not confer significant protection to RGCs after EDN1 insult. These results indicate that EDN caused RGC death via a JUN-dependent mechanism. In addition, EDN signaling is known to elicit potent vasoconstriction. JUN signaling was shown to drive neuronal death after ischemic insult. Therefore, the effects of intravitreal EDN1 on retinal vessel diameter and hypoxia were explored. Intravitreal EDN1 caused transient retinal vasoconstriction and regions of RGC and Müller glia hypoxia. Thus, it remains a possibility that EDN elicits a hypoxic insult to RGCs, causing apoptosis via JNK-JUN signaling. The importance of EDN-induced vasoconstriction and hypoxia in causing RGC death after EDN insult and in models of glaucoma requires further investigation

    Search for composite and exotic fermions at LEP 2

    Get PDF
    A search for unstable heavy fermions with the DELPHI detector at LEP is reported. Sequential and non-canonical leptons, as well as excited leptons and quarks, are considered. The data analysed correspond to an integrated luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172 GeV and 161 GeV. The search for pair-produced new leptons establishes 95% confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2, depending on the channel. The search for singly produced excited leptons and quarks establishes upper limits on the ratio of the coupling of the excited fermio

    MATH5 controls the acquisition of multiple retinal cell fates

    Get PDF
    Math5-null mutation results in the loss of retinal ganglion cells (RGCs) and in a concurrent increase of amacrine and cone cells. However, it remains unclear whether there is a cell fate switch of Math5-lineage cells in the absence of Math5 and whether MATH5 cell-autonomously regulates the differentiation of the above retinal neurons. Here, we performed a lineage analysis of Math5-expressing cells in developing mouse retinas using a conditional GFP reporter (Z/EG) activated by a Math5-Cre knock-in allele. We show that during normal retinogenesis, Math5-lineage cells mostly develop into RGCs, horizontal cells, cone photoreceptors, rod photoreceptors, and amacrine cells. Interestingly, amacrine cells of Math5-lineage cells are predominately of GABAergic, cholinergic, and A2 subtypes, indicating that Math5 plays a role in amacrine subtype specification. In the absence of Math5, more Math5-lineage cells undergo cell fate conversion from RGCs to the above retinal cell subtypes, and occasionally to cone-bipolar cells and Müller cells. This change in cell fate choices is accompanied by an up-regulation of NEUROD1, RXRγ and BHLHB5, the transcription factors essential for the differentiation of retinal cells other than RGCs. Additionally, loss of Math5 causes the failure of early progenitors to exit cell cycle and leads to a significant increase of Math5-lineage cells remaining in cell cycle. Collectively, these data suggest that Math5 regulates the generation of multiple retinal cell types via different mechanisms during retinogenesis

    Transcultural engagement with Polish memory of the Holocaust while watching Leszek Wosiewicz's Kornblumenblau

    Get PDF
    Kornblumenblau (Leszek Wosiewicz 1989) is a film that explores the experience of a Polish political prisoner interned at Auschwitz I. It particularly foregrounds issues related to Polish-Jewish relations during the Holocaust in its diegesis. Holocaust films are often discussed in relation to representation and the cultural specificity of their production context. However, this paper suggests thinking about film and topographies, the theme of this issue, not in relation to where a work is produced but in regards to the spectatorial space. It adopts a phenomenological approach to consider how, despite Kornblumenblau's particularly Polish themes, it might address the transcultural spectator and draw attention to the broader difficulties one faces when attempting to remember the Holocaust. Influenced particularly by the writing of Jennifer M. Barker and Laura U. Marks, this paper suggests that film possesses a body ¬¬- a display of intentionality, beyond those presented within the diegesis, which engages in dialogue with the spectator. During the experience of viewing Kornblumenblau, this filmic corporeality draws attention to the difficulties of confronting the Holocaust in particularly haptic ways, as the film points to the unreliability of visual historical sources, relates abject sensations to concentrationary spaces and breaks down as it confronts the scene of the gas chamber

    Genetic context determines susceptibility to intraocular pressure elevation in a mouse pigmentary glaucoma

    Get PDF
    BACKGROUND: DBA/2J (D2) mice develop an age-related form of glaucoma. Their eyes progressively develop iris pigment dispersion and iris atrophy followed by increased intraocular pressure (IOP) and glaucomatous optic nerve damage. Mutant alleles of the Gpnmb and Tyrp1 genes are necessary for the iris disease, but it is unknown whether alleles of other D2 gene(s) are necessary for the distinct later stages of disease. We initiated a study of congenic strains to further define the genetic requirements and disease mechanisms of the D2 glaucoma. RESULTS: To further understand D2 glaucoma, we created congenic strains of mice on the C57BL/6J (B6) genetic background. B6 double-congenic mice carrying D2-derived Gpnmb and Tyrp1 mutations develop a D2-like iris disease. B6 single-congenics with only the Gpnmb and Tyrp1 mutations develop milder forms of iris disease. Genetic epistasis experiments introducing a B6 tyrosinase mutation into the congenic strains demonstrated that both the single and double-congenic iris diseases are rescued by interruption of melanin synthesis. Importantly, our experiments analyzing mice at ages up to 27 months indicate that the B6 double-congenic mice are much less prone to IOP elevation and glaucoma than are D2 mice. CONCLUSION: As demonstrated here, the Gpnmb and Tyrp1 iris phenotypes are both individually dependent on tyrosinase function. These results support involvement of abnormal melanosomal events in the diseases caused by each gene. In the context of the inbred D2 mouse strain, the glaucoma phenotype is clearly influenced by more genes than just Gpnmb and Tyrp1. Despite the outward similarity of pigment-dispersing iris disease between D2 and the B6 double-congenic mice, the congenic mice are much less susceptible to developing high IOP and glaucoma. These new congenic strains provide a valuable new resource for further studying the genetic and mechanistic complexity of this form of glaucoma
    corecore