10,727 research outputs found

    A model for the onset of oscillations near the stopping angle in an inclined granular flow

    Full text link
    We propose an explanation for the onset of oscillations seen in numerical simulations of dense, inclined flows of inelastic, frictional spheres. It is based on a phase transition between disordered and ordered collisional states that may be interrupted by the formation of force chains. Low frequency oscillations between ordered and disordered states take place over weakly bumpy bases; higher-frequency oscillations over strongly bumpy bases involve the formation of particle chains that extend to the base and interrupt the phase change. The predicted frequency and amplitude of the oscillations induced by the unstable part of the equation of state are similar to those seen in the simulations and they depend upon the contact stiffness in the same way. Such oscillations could be the source of sound produced by flowing sand

    Inclusive Production Through AdS/CFT

    Full text link
    It has been shown that AdS/CFT calculations can reproduce certain exclusive 2->2 cross sections in QCD at high energy, both for near-forward and for fixed-angle scattering. In this paper, we extend prior treatments by using AdS/CFT to calculate the inclusive single-particle production cross section in QCD at high center-of-mass energy. We find that conformal invariance in the UV restricts the cross section to have a characteristic power-law falloff in the transverse momentum of the produced particle, with the exponent given by twice the conformal dimension of the produced particle, independent of incoming particle types. We conclude by comparing our findings to recent LHC experimental data from ATLAS and ALICE, and find good agreement.Comment: JHEP version. Discussion, appendix, figures, and tables added. Conclusions and key results unchange

    Magnetic monopole loop for the Yang-Mills instanton

    Get PDF
    We investigate 't Hooft-Mandelstam monopoles in QCD in the presence of a single classical instanton configuration. The solution to the Maximal Abelian projection is found to be a circular monopole trajectory with radius RR centered on the instanton. At zero loop radius, there is a marginally stable (or flat) direction for loop formation to O(R4logR)O(R^4 logR). We argue that loops will form, in the semi-classical limit, due to small perturbations such as the dipole interaction between instanton anti-instanton pairs. As the instanton gas becomes a liquid, the percolation of the monopole loops may therefore provide a semi-classical precursor to the confinement mechanism.Comment: 19 pages, ReVTeX, 5 Encaptulated Postscript figure

    On the Eikonal Approximation in AdS Space

    Full text link
    We explore the eikonal approximation to graviton exchange in AdS_5 space, as relevant to scattering in gauge theories. We restrict ourselves to the regime where conformal invariance of the dual gauge theory holds, and to large 't Hooft coupling where the computation involves pure gravity. We give a heuristic argument, a direct loop computation, and a shock wave derivation. The scalar propagator in AdS_3 plays a key role, indicating that even at strong coupling, two-dimensional conformal invariance controls high-energy four-dimensional gauge-theory scattering.Comment: 22 pages, 2 figures; published version: updated references and several clarifying remarks adde
    corecore