27,952 research outputs found

    A Covert Data Transport Protocol

    Full text link
    Both enterprise and national firewalls filter network connections. For data forensics and botnet removal applications, it is important to establish the information source. In this paper, we describe a data transport layer which allows a client to transfer encrypted data that provides no discernible information regarding the data source. We use a domain generation algorithm (DGA) to encode AES encrypted data into domain names that current tools are unable to reliably differentiate from valid domain names. The domain names are registered using (free) dynamic DNS services. The data transmission format is not vulnerable to Deep Packet Inspection (DPI).Comment: 8 pages, 10 figures, conferenc

    Segmentally Variable Genes: A New Perspective on Adaptation

    Get PDF
    Genomic sequence variation is the hallmark of life and is key to understanding diversity and adaptation among the numerous microorganisms on earth. Analysis of the sequenced microbial genomes suggests that genes are evolving at many different rates. We have attempted to derive a new classification of genes into three broad categories: lineage-specific genes that evolve rapidly and appear unique to individual species or strains; highly conserved genes that frequently perform housekeeping functions; and partially variable genes that contain highly variable regions, at least 70 amino acids long, interspersed among well-conserved regions. The latter we term segmentally variable genes (SVGs), and we suggest that they are especially interesting targets for biochemical studies. Among these genes are ones necessary to deal with the environment, including genes involved in host–pathogen interactions, defense mechanisms, and intracellular responses to internal and environmental changes. For the most part, the detailed function of these variable regions remains unknown. We propose that they are likely to perform important binding functions responsible for protein–protein, protein–nucleic acid, or protein–small molecule interactions. Discerning their function and identifying their binding partners may offer biologists new insights into the basic mechanisms of adaptation, context-dependent evolution, and the interaction between microbes and their environment. Segmentally variable genes show a mosaic pattern of one or more rapidly evolving, variable regions. Discerning their function may provide new insights into the forces that shape genome diversity and adaptationNational Science Foundation (998088, 0239435

    Energy density in density functional theory: Application to crystalline defects and surfaces

    Full text link
    We propose a method to decompose the total energy of a supercell containing defects into contributions of individual atoms, using the energy density formalism within density functional theory. The spatial energy density is unique up to a gauge transformation, and we show that unique atomic energies can be calculated by integrating over Bader and charge-neutral volumes for each atom. Numerically, we implement the energy density method in the framework of the Vienna ab initio simulation package (VASP) for both norm-conserving and ultrasoft pseudopotentials and the projector augmented wave method, and use a weighted integration algorithm to integrate the volumes. The surface energies and point defect energies can be calculated by integrating the energy density over the surface region and the defect region, respectively. We compute energies for several surfaces and defects: the (110) surface energy of GaAs, the mono-vacancy formation energies of Si, the (100) surface energy of Au, and the interstitial formation energy of O in the hexagonal close-packed Ti crystal. The surface and defect energies calculated using our method agree with size-converged calculations of the difference between the total energies of the system with and without the defect. Moreover, the convergence of the defect energies with size can be found from a single calculation.Comment: 25 pages, 6 figure

    Warranty Cost Analysis with an Alternating Geometric Process

    Full text link
    In this study we model the warranty claims process and evaluate the warranty servicing costs under non-renewing and renewing free repair warranties. We assume that the repair time for rectifying the claims is non-zero and the repair cost is a function of the length of the repair time. To accommodate the ageing of the product and repair equipment, we use a decreasing geometric process to model the consecutive operational times and an increasing geometric process to model the consecutive repair times. We identify and study the alternating geometric process (AGP), which is an alternating process with cycles consisting of the item's operational time followed by the corresponding repair time. We derive new results for the AGP in finite horizon and use them to evaluate the warranty costs over the warranty period and over the life cycle of the product under a non-renewing free repair warranty (NRFRW), a renewing free repair warranty (RFRW) and a restricted renewing free repair warranty (RRFRW(n)). Properties of the model are demonstrated using a simulation study

    Convolutional-Code-Specific CRC Code Design

    Full text link
    Cyclic redundancy check (CRC) codes check if a codeword is correctly received. This paper presents an algorithm to design CRC codes that are optimized for the code-specific error behavior of a specified feedforward convolutional code. The algorithm utilizes two distinct approaches to computing undetected error probability of a CRC code used with a specific convolutional code. The first approach enumerates the error patterns of the convolutional code and tests if each of them is detectable. The second approach reduces complexity significantly by exploiting the equivalence of the undetected error probability to the frame error rate of an equivalent catastrophic convolutional code. The error events of the equivalent convolutional code are exactly the undetectable errors for the original concatenation of CRC and convolutional codes. This simplifies the computation because error patterns do not need to be individually checked for detectability. As an example, we optimize CRC codes for a commonly used 64-state convolutional code for information length k=1024 demonstrating significant reduction in undetected error probability compared to the existing CRC codes with the same degrees. For a fixed target undetected error probability, the optimized CRC codes typically require 2 fewer bits.Comment: 12 pages, 8 figures, journal pape
    corecore