25 research outputs found
The data paper: a mechanism to incentivize data publishing in biodiversity science
<p/> <p>Background</p> <p>Free and open access to primary biodiversity data is essential for informed decision-making to achieve conservation of biodiversity and sustainable development. However, primary biodiversity data are neither easily accessible nor discoverable. Among several impediments, one is a lack of incentives to data publishers for publishing of their data resources. One such mechanism currently lacking is recognition through conventional scholarly publication of enriched metadata, which should ensure rapid discovery of 'fit-for-use' biodiversity data resources.</p> <p>Discussion</p> <p>We review the state of the art of data discovery options and the mechanisms in place for incentivizing data publishers efforts towards easy, efficient and enhanced publishing, dissemination, sharing and re-use of biodiversity data. We propose the establishment of the 'biodiversity data paper' as one possible mechanism to offer scholarly recognition for efforts and investment by data publishers in authoring rich metadata and publishing them as citable academic papers. While detailing the benefits to data publishers, we describe the objectives, work flow and outcomes of the pilot project commissioned by the Global Biodiversity Information Facility in collaboration with scholarly publishers and pioneered by Pensoft Publishers through its journals <it>Zookeys</it>, <it>PhytoKeys</it>, <it>MycoKeys</it>, <it>BioRisk</it>, <it>NeoBiota</it>, <it>Nature Conservation</it> and the forthcoming <it>Biodiversity Data Journal</it>. We then debate further enhancements of the data paper beyond the pilot project and attempt to forecast the future uptake of data papers as an incentivization mechanism by the stakeholder communities.</p> <p>Conclusions</p> <p>We believe that in addition to recognition for those involved in the data publishing enterprise, data papers will also expedite publishing of fit-for-use biodiversity data resources. However, uptake and establishment of the data paper as a potential mechanism of scholarly recognition requires a high degree of commitment and investment by the cross-sectional stakeholder communities.</p
UK-68,798, A Class III Antiarrhythmic Drug with Antifibrillatory Properties
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74787/1/j.1527-3466.1992.tb00244.x.pd
Traffic and Related Self-Driven Many-Particle Systems
Since the subject of traffic dynamics has captured the interest of
physicists, many astonishing effects have been revealed and explained. Some of
the questions now understood are the following: Why are vehicles sometimes
stopped by so-called ``phantom traffic jams'', although they all like to drive
fast? What are the mechanisms behind stop-and-go traffic? Why are there several
different kinds of congestion, and how are they related? Why do most traffic
jams occur considerably before the road capacity is reached? Can a temporary
reduction of the traffic volume cause a lasting traffic jam? Under which
conditions can speed limits speed up traffic? Why do pedestrians moving in
opposite directions normally organize in lanes, while similar systems are
``freezing by heating''? Why do self-organizing systems tend to reach an
optimal state? Why do panicking pedestrians produce dangerous deadlocks? All
these questions have been answered by applying and extending methods from
statistical physics and non-linear dynamics to self-driven many-particle
systems. This review article on traffic introduces (i) empirically data, facts,
and observations, (ii) the main approaches to pedestrian, highway, and city
traffic, (iii) microscopic (particle-based), mesoscopic (gas-kinetic), and
macroscopic (fluid-dynamic) models. Attention is also paid to the formulation
of a micro-macro link, to aspects of universality, and to other unifying
concepts like a general modelling framework for self-driven many-particle
systems, including spin systems. Subjects such as the optimization of traffic
flows and relations to biological or socio-economic systems such as bacterial
colonies, flocks of birds, panics, and stock market dynamics are discussed as
well.Comment: A shortened version of this article will appear in Reviews of Modern
Physics, an extended one as a book. The 63 figures were omitted because of
storage capacity. For related work see http://www.helbing.org
A portrait of the Higgs boson by the CMS experiment ten years after the discovery
A Correction to this paper has been published (18 October 2023) : https://doi.org/10.1038/s41586-023-06164-8.Data availability:
Tabulated results are provided in the HEPData record for this analysis. Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS data preservation, re-use and open acess policy.Code availability:
The CMS core software is publicly available on GitHub (https://github.com/cms-sw/cmssw).In July 2012, the ATLAS and CMS collaborations at the CERN Large Hadron Collider announced the observation of a Higgs boson at a mass of around 125 gigaelectronvolts. Ten years later, and with the data corresponding to the production of a 30-times larger number of Higgs bosons, we have learnt much more about the properties of the Higgs boson. The CMS experiment has observed the Higgs boson in numerous fermionic and bosonic decay channels, established its spin–parity quantum numbers, determined its mass and measured its production cross-sections in various modes. Here the CMS Collaboration reports the most up-to-date combination of results on the properties of the Higgs boson, including the most stringent limit on the cross-section for the production of a pair of Higgs bosons, on the basis of data from proton–proton collisions at a centre-of-mass energy of 13 teraelectronvolts. Within the uncertainties, all these observations are compatible with the predictions of the standard model of elementary particle physics. Much evidence points to the fact that the standard model is a low-energy approximation of a more comprehensive theory. Several of the standard model issues originate in the sector of Higgs boson physics. An order of magnitude larger number of Higgs bosons, expected to be examined over the next 15 years, will help deepen our understanding of this crucial sector.BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NSTDA (Thailand); TUBITAK and TENMAK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 884104, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Stavros Niarchos Foundation (Greece); the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306, and under project number 400140256 - GRK2497; the Hungarian Academy of Sciences, the New National Excellence Program - ÚNKP, the NKFIH research grants K 124845, K 124850, K 128713, K 128786, K 129058, K 131991, K 133046, K 138136, K 143460, K 143477, 2020-2.2.1-ED-2021-00181, and TKP2021-NKTA-64 (Hungary); the Council of Science and Industrial Research, India; the Latvian Council of Science; the Ministry of Education and Science, project no. 2022/WK/14, and the National Science Center, contracts Opus 2021/41/B/ST2/01369 and 2021/43/B/ST2/01552 (Poland); the Fundação para a Ciência e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; MCIN/AEI/10.13039/501100011033, ERDF “a way of making Europe”, and the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project, and the National Science, Research and Innovation Fund via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, grant B05F650021 (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA)
The CMS Statistical Analysis and Combination Tool: Combine
Metrics: https://link.springer.com/article/10.1007/s41781-024-00121-4/metricsThis paper describes the Combine software package used for statistical analyses by the CMS Collaboration. The package, originally designed to perform searches for a Higgs boson and the combined analysis of those searches, has evolved to become the statistical analysis tool presently used in the majority of measurements and searches performed by the CMS Collaboration. It is not specific to the CMS experiment, and this paper is intended to serve as a reference for users outside of the CMS Collaboration, providing an outline of the most salient features and capabilities. Readers are provided with the possibility to run Combine and reproduce examples provided in this paper using a publicly available container image. Since the package is constantly evolving to meet the demands of ever-increasing data sets and analysis sophistication, this paper cannot cover all details of Combine. However, the online documentation referenced within this paper provides an up-to-date and complete user guide.CERN (European Organization for Nuclear Research)STFC (United Kingdom)Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 101115353, 101002207, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundatio
Measurement of the differential tt¯ production cross section as a function of the jet mass and extraction of the top quark mass in hadronic decays of boosted top quarks
Data Availability:
This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as stated in https://cms-docdb.cern.ch/cgibin/PublicDocDB/RetrieveFile?docid=6032 &filename=CMSDataPolicyV1.2.pdf &version=2.]A measurement of the jet mass distribution in hadronic decays of Lorentz-boosted top quarks is presented. The measurement is performed in the lepton + jets channel of top quark pair production (tt¯
) events, where the lepton is an electron or muon. The products of the hadronic top quark decay are reconstructed using a single large-radius jet with transverse momentum greater than 400GeV
. The data were collected with the CMS detector at the LHC in proton-proton collisions and correspond to an integrated luminosity of 138fb−1
. The differential tt¯
production cross section as a function of the jet mass is unfolded to the particle level and is used to extract the top quark mass. The jet mass scale is calibrated using the hadronic W boson decay within the large-radius jet. The uncertainties in the modelling of the final state radiation are reduced by studying angular correlations in the jet substructure. These developments lead to a significant increase in precision, and a top quark mass of 173.06±0.84GeV.SCOAP
Portable Acceleration of CMS Computing Workflows with Coprocessors as a Service
A preprint version of the article is available at: arXiv:2402.15366v2 [physics.ins-det], https://arxiv.org/abs/2402.15366 . Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/MLG-23-001 (CMS Public Pages). Report numbers: CMS-MLG-23-001, CERN-EP-2023-303.Data Availability: No datasets were generated or analyzed during the current study.Computing demands for large scientific experiments, such as the CMS experiment at the CERN LHC, will increase dramatically in the next decades. To complement the future performance increases of software running on central processing units (CPUs), explorations of coprocessor usage in data processing hold great potential and interest. Coprocessors are a class of computer processors that supplement CPUs, often improving the execution of certain functions due to architectural design choices. We explore the approach of Services for Optimized Network Inference on Coprocessors (SONIC) and study the deployment of this as-a-service approach in large-scale data processing. In the studies, we take a data processing workflow of the CMS experiment and run the main workflow on CPUs, while offloading several machine learning (ML) inference tasks onto either remote or local coprocessors, specifically graphics processing units (GPUs). With experiments performed at Google Cloud, the Purdue Tier-2 computing center, and combinations of the two, we demonstrate the acceleration of these ML algorithms individually on coprocessors and the corresponding throughput improvement for the entire workflow. This approach can be easily generalized to different types of coprocessors and deployed on local CPUs without decreasing the throughput performance. We emphasize that the SONIC approach enables high coprocessor usage and enables the portability to run workflows on different types of coprocessors.SCOAP3. Open access funding provided by CERN (European Organization for Nuclear Research
Effects of creatine supplementation on aerobic power and cardiovascular structure and function
This project aimed to determine 1) whether creatine (Cr) supplementation affects cardiovascular structure and function and 2) to examine its effect on aerobic power. Eighteen males undertook aerobic testing on a cycle ergometer and echocardiographic assessment of the heart. The experimental group (N=9) ingested 20g·day-1 of Cr for seven days followed by 10g·day-1 for a further 21 days. The control group (N=9) followed an identical protocol ingesting a placebo for the same period. Assessment was performed pre-, mid- (seven days) and post-testing (28 days). A MANOVA with repeated measures was used to test for group differences before and after supplementation. The Cr group demonstrated a significant increase in body mass for the pre-mid (1.0±0.6 kg) and the pre-post (1.5±0.7 kg) testing occasions. Submaximal V̇O2 decreased significantly from the pre-mid and pre-post testing occasions by between 4.8% to 11.4% with Cr supplementation at workloads of 75 W and 150 W. Other oxygen consumption measures and exercise time to exhaustion, for the Cr group, showed decreasing trends that approached significance. Additionally, there was a significant pre-post decrease in maximum heart rate of 3.7%. There were no changes in any of the echocardiographic or blood pressure measures for either group. The present results suggest short term Cr supplementation has no detectable negative effect on cardiac structure or function. Additionally, Cr ingestion improves submaximal cycling efficiency. These results suggest that the increase in efficiency may be related to peripheral factors such an increase in muscle phosphocreatine, rather than central changes
Plasma Hsp72 is higher in runners with more serious symptoms of exertional heat illness
Exertional heat illness is a potentially fatal disorder that primarily affects fit young men. Plasma Hsp72 may be important in the aetiology of this disorder, acting as a danger signal to the organism and leading to an inflammatory response. The aim of this study was to determine whether patients with exertional heat illness following a 14 km run show a difference in their plasma Hsp72 concentration compared with control subjects who completed the event without incident. Patients (n = 22) and controls (n = 7) were all male. The patients were subdivided into two groups, one of which exhibited more serious symptoms indicating neurological impairment such as confusion (n = 13) (CNS) while the other group exhibited mild symptoms (MILD) (n = 9). The CNS group had a higher rectal temperature (T(rec)) compared with the control group (41.0 +/- 0.3 vs. 39.8 +/- 0.2 degrees C, P < 0.05, mean +/- SE). Immediately after the run plasma Hsp72 was higher in the CNS group compared to controls and patients with mild symptoms (37.9, 17.0, and 20.9 ng/ml, respectively, P < 0.005). There was a correlation between plasma Hsp72 and T(rec) measured immediately after the race (r = 0.597, P < 0.001, n = 29). However, core temperature was not the only factor leading to increased plasma Hsp72 immediately post race. Plasma Hsp72 was still higher in CNS patients compared with the control group (P < 0.05) when T(rec )was included as a covariate. In conclusion, plasma Hsp72 was elevated immediately after a 14 km run with higher levels in patients with more serious symptoms of heat illness
Lymphocyte HSP72 following exercise in hyperthermic runners: the effect of temperature
Heat shock protein 72 (HSP72) is the most inducible HSP, but is not always increased in lymphocytes following exercise. This field study examined whether lymphocyte HSP72 was increased in hyperthermic (Trec>39.0 °C) male athletes following a 14 km competitive race in cool conditions (ambient temperature 11.2 °C). A comparison was also made between control runners (n=7) and those treated for exertional heat illness (n=9). Lymphocyte HSP72 was not increased in control runners immediately post- compared with pre-race, and there was no difference between both groups of runners. A second study of the race (ambient temperature 14.6 °C) found that lymphocyte HSP72 in control (n=7) and treated (n=9) athletes was higher 2 days post- compared with immediately post-race (p<0.01) and these increases were correlated with post-exercise Trec (p<0.05). © 2007 Elsevier Ltd. All rights reserved
