903 research outputs found

    Uji Formulasi Pupuk Organik Cair Berbahan Aktif Bacillus SP. pada Pembibitan Utama Kelapa Sawit (Elaeis Guineensis Jacq)

    Full text link
    Palm oil (Elaeis guineensis Jacq) is a crop plantation were a high economic value because it is a vegetable oil plant. In Indonesia, oil palm is important to increasing the country's income and able to improve people's fare well, especially in Riau Province. The study aimed to examine the effect of formulations liquid organic fertilizer contain active Bacillus sp. and get the best formulations on the growth of oil palm seedlings (Elaeis guineensis Jacq). The research was conducted in Quarantine Laboratory, Pekanbaru and in the technical implementation unit of agriculture faculty of Riau University, in April until to October 2013. The methods of research is experimentally with using randomized block design (RBD) with 5 treatments and 4 replications. The data were analyzed statistically with using analysis of variance and followed by Duncan's New Multiple Range Test at level α = 5%. The parameters measured were increase of seedling height, increase of the number of midrib, increase of circle stem, seedling root volume, root crown ratio and dry weight of plants. The results of the research showing that all treatment of formulations Bacillus sp. were tested has non significant effect on all parameters of observation. Formulations of Bacillus sp. with coconut water is the best formulation in increasing of palm oil seedling height and the tendency towards in increase of number of the midrib and plant dry weight

    Granular Packings: Nonlinear elasticity, sound propagation and collective relaxation dynamics

    Full text link
    Experiments on isotropic compression of a granular assembly of spheres show that the shear and bulk moduli vary with the confining pressure faster than the 1/3 power law predicted by Hertz-Mindlin effective medium theories (EMT) of contact elasticity. Moreover, the ratio between the moduli is found to be larger than the prediction of the elastic theory by a constant value. The understanding of these discrepancies has been a longstanding question in the field of granular matter. Here we perform a test of the applicability of elasticity theory to granular materials. We perform sound propagation experiments, numerical simulations and theoretical studies to understand the elastic response of a deforming granular assembly of soft spheres under isotropic loading. Our results for the behavior of the elastic moduli of the system agree very well with experiments. We show that the elasticity partially describes the experimental and numerical results for a system under compressional loads. However, it drastically fails for systems under shear perturbations, particularly for packings without tangential forces and friction. Our work indicates that a correct treatment should include not only the purely elastic response but also collective relaxation mechanisms related to structural disorder and nonaffine motion of grains.Comment: 21 pages, 13 figure

    Produtividade de grãos e componentes de produção da canola de acordo com fontes e doses de nitrogênio.

    Get PDF
    Avalia a resposta da canola a fontes e doses de nitrogênio aplicadas na semeadura. O experimento foi conduzido em Latossolo Vermelho distroférrico típico, com textura muito argilosa. Utilizou-se delineamento experimental de blocos ao acaso, em arranjo fatorial 7x2, com sete doses de N em superfície na semeadura (0, 20, 40, 60, 80, 100 e 120 kg ha‑1), duas fontes de N (sulfato de amônio e ureia) e quatro repetições. O experimento foi realizado com o híbrido Hyola 61, por dois anos, e foram avaliadas as seguintes variáveis: altura de planta, número de plantas por metro quadrado, massa de matéria seca da parte aérea, massa de síliquas por planta, massa de mil grãos, produtividade de grãos, e teores de proteína e de óleo nos grãos. As variáveis não foram influenciadas pelas fontes de N. A maior produtividade de grãos é alcançada com 88 kg ha‑1 de N. Doses crescentes de N aumentam os teores de proteína e diminuem os de óleo nos grãos de canola

    Anisotropic nonlinear elasticity in a spherical bead pack: influence of the fabric anisotropy

    Full text link
    Stress-strain measurements and ultrasound propagation experiments in glass bead packs have been simultaneously conducted to characterize the stress-induced anisotropy under uniaxial loading. These measurements, realized respectively with finite and incremental deformations of the granular assembly, are analyzed within the framework of the effective medium theory based on the Hertz-Mindlin contact theory. Our work shows that both compressional and shear wave velocities and consequently the incremental elastic moduli agree fairly well with the effective medium model by Johnson et al. [J. Appl. Mech. 65, 380 (1998)], but the anisotropic stress ratio resulting from finite deformation does not at all. As indicated by numerical simulations, the discrepancy may arise from the fact that the model doesn't properly allow the grains to relax from the affine motion approximation. Here we find that the interaction nature at the grain contact could also play a crucial role for the relevant prediction by the model; indeed, such discrepancy can be significantly reduced if the frictional resistance between grains is removed. Another main experimental finding is the influence of the inherent anisotropy of granular packs, realized by different protocols of the sample preparation. Our results reveal that compressional waves are more sensitive to the stress-induced anisotropy, whereas the shear waves are more sensitive to the fabric anisotropy, not being accounted in analytical effective medium models.Comment: 9 pages, 8 figure

    Ethnic differences in proximal and distal tubular sodium reabsorption are heritable in black and white populations.

    Get PDF
    BACKGROUND: Segmental handling of sodium along the proximal and distal nephron might be heritable and different between black and white participants. METHODS: We randomly recruited 95 nuclear families of black South African ancestry and 103 nuclear families of white Belgian ancestry. We measured the (FENa) and estimated the fractional renal sodium reabsorption in the proximal (RNaprox) and distal (RNadist) tubules from the clearances of endogenous lithium and creatinine. In multivariable analyses, we studied the relation of RNaprox and RNadist with FENa and estimated the heritability (h) of RNaprox and RNadist. RESULTS: Independent of urinary sodium excretion, South Africans (n = 240) had higher RNaprox (unadjusted median, 93.9% vs. 81.0%; P < 0.001) than Belgians (n = 737), but lower RNadist (91.2% vs. 95.1%; P < 0.001). The slope of RNaprox on FENa was steeper in Belgians than in South Africans (-5.40 +/- 0.58 vs. -0.78 +/- 0.58 units; P < 0.001), whereas the opposite was true for the slope of RNadist on FENa (-3.84 +/- 0.19 vs. -13.71 +/- 1.30 units; P < 0.001). h of RNaprox and RNadist was high and significant (P < 0.001) in both countries. h was higher in South Africans than in Belgians for RNaprox (0.82 vs. 0.56; P < 0.001), but was similar for RNadist (0.68 vs. 0.50; P = 0.17). Of the filtered sodium load, black participants reabsorb more than white participants in the proximal nephron and less postproximally. CONCLUSION: Segmental sodium reabsorption along the nephron is highly heritable, but the capacity for regulation in the proximal and postproximal tubules differs between whites and blacks

    Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation

    Full text link
    Recent advances in quantum information processing with trapped ions have demonstrated the need for new ion trap architectures capable of holding and manipulating chains of many (>10) ions. Here we present the design and detailed characterization of a new linear trap, microfabricated with scalable complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited to this challenge. Forty-four individually controlled DC electrodes provide the many degrees of freedom required to construct anharmonic potential wells, shuttle ions, merge and split ion chains, precisely tune secular mode frequencies, and adjust the orientation of trap axes. Microfabricated capacitors on DC electrodes suppress radio-frequency pickup and excess micromotion, while a top-level ground layer simplifies modeling of electric fields and protects trap structures underneath. A localized aperture in the substrate provides access to the trapping region from an oven below, permitting deterministic loading of particular isotopic/elemental sequences via species-selective photoionization. The shapes of the aperture and radio-frequency electrodes are optimized to minimize perturbation of the trapping pseudopotential. Laboratory experiments verify simulated potentials and characterize trapping lifetimes, stray electric fields, and ion heating rates, while measurement and cancellation of spatially-varying stray electric fields permits the formation of nearly-equally spaced ion chains.Comment: 17 pages (including references), 7 figure
    corecore