2,030 research outputs found
Autonomous Reinforcement of Behavioral Sequences in Neural Dynamics
We introduce a dynamic neural algorithm called Dynamic Neural (DN)
SARSA(\lambda) for learning a behavioral sequence from delayed reward.
DN-SARSA(\lambda) combines Dynamic Field Theory models of behavioral sequence
representation, classical reinforcement learning, and a computational
neuroscience model of working memory, called Item and Order working memory,
which serves as an eligibility trace. DN-SARSA(\lambda) is implemented on both
a simulated and real robot that must learn a specific rewarding sequence of
elementary behaviors from exploration. Results show DN-SARSA(\lambda) performs
on the level of the discrete SARSA(\lambda), validating the feasibility of
general reinforcement learning without compromising neural dynamics.Comment: Sohrob Kazerounian, Matthew Luciw are Joint first author
Studying Macro- and Mesoscopic Wetting Dynamics of a Spreading Oil Droplet Using Multiple Colour Interferometry
In this work we present an interferometry technique based on either two or
three laser induced wavelengths to capture the transient contour of liquids
close to the advancing three-phase contact line. A detailed insight into
different data analysis procedures is given, which can be used to evaluate data
in cases where the experimental data quality contains different types of errors
or noise. Using the phase information contained in our experimental data, the
technique allows an unambiguous determination of a local film thickness for
optical path differences up to without
the need of a known reference height for the given set of wavelengths. Small
film thicknesses down to values of about are successfully
analyzed with the presented methodology. The measurement technique is applied
to study the spreading of a small droplet of a perfectly wetting fluid on a
smooth sapphire surface. The whole three dimensional droplet shape as well as
its shape near the moving three phase contact line are investigated for
different capillary numbers revealing an extended mesoscopic droplet shape that
is not well captured by classical theories
Recommended from our members
A Neural Dynamic Model Parses Object-Oriented Actions
Parsing actions entails that relations between objects are dis-covered. A pervasively neural account of this process requiresthat fundamental problems are solved: the neural pointer prob-lem, the binding problem, and the problem of generating dis-crete processing steps from time-continuous neural processes.We present a prototypical solution to these problems in a neuraldynamic model that comprises dynamic neural fields holdingrepresentations close to sensorimotor surfaces as well as dy-namic nodes holding discrete, language-like representations.Making the connection between these two types of represen-tations enables the model to parse actions as well as groundmovement phrases—all based on real visual input. We demon-strate how the dynamic neural processes autonomously gen-erate the processing steps required to parse or ground object-oriented action
Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates
Solitons are among the most distinguishing fundamental excitations in a wide
range of non-linear systems such as water in narrow channels, high speed
optical communication, molecular biology and astrophysics. Stabilized by a
balance between spreading and focusing, solitons are wavepackets, which share
some exceptional generic features like form-stability and particle-like
properties. Ultra-cold quantum gases represent very pure and well-controlled
non-linear systems, therefore offering unique possibilities to study soliton
dynamics. Here we report on the first observation of long-lived dark and
dark-bright solitons with lifetimes of up to several seconds as well as their
dynamics in highly stable optically trapped Rb Bose-Einstein
condensates. In particular, our detailed studies of dark and dark-bright
soliton oscillations reveal the particle-like nature of these collective
excitations for the first time. In addition, we discuss the collision between
these two types of solitary excitations in Bose-Einstein condensates.Comment: 9 pages, 4 figure
Molecular hydrogen, deuterium and metal abundances in the damped Ly-alpha system at z = 3.025 toward QSO 0347-3819
We have detected in high resolution spectra of the quasar Q0347--3819
obtained with the UVES spectrograph at the VLT/Kueyen telescope over 80
absorption features in the Lyman and Werner H2 bands at the redshift of a
damped Ly-alpha system at z = 3.025. The z = 3.025 system spans over 80 km/s
and exhibits a multicomponent velocity structure in the metal lines. The main
component at z = 3.024855 shows a total H2 column density N(H2) =
(4.10\pm0.21)*10^{14} cm^{-2} and a fractional molecular abundance f(H2) =
(1.94\pm0.10)*10^{-6} derived from the H2 lines arising from J=0 to 5
rotational levels of the ground electronic-vibrational state. For the first
time we unambiguously reveal a pronounced [alpha-element/iron-peak] enhancement
of [O,Si/Zn] = 0.6\pm0.1 (6 sigma c.l.) at high redshift. The simultaneous
analysis of metal and hydrogen lines leads to D/H = (3.75\pm0.25)*10^{-5}. This
value is consistent with standard big bang nucleosynthesis if the
baryon-to-photon ratio, eta, lies within the range 4.37*10^{-10} <= eta <=
5.32*10^{-10}, implying 0.016 <= Omega_b h^2_100 <= 0.020.Comment: 32 pages, 16 ps figures, accepted to Ap
Observation of the Baryonic Flavor-Changing Neutral Current Decay Lambda_b -> Lambda mu+ mu-
We report the first observation of the baryonic flavor-changing neutral
current decay Lambda_b -> Lambda mu+ mu- with 24 signal events and a
statistical significance of 5.8 Gaussian standard deviations. This measurement
uses ppbar collisions data sample corresponding to 6.8fb-1 at sqrt{s}=1.96TeV
collected by the CDF II detector at the Tevatron collider. The total and
differential branching ratios for Lambda_b -> Lambda mu+ mu- are measured. We
find B(Lambda_b -> Lambda mu+ mu-) = [1.73+-0.42(stat)+-0.55(syst)] x 10^{-6}.
We also report the first measurement of the differential branching ratio of B_s
-> phi mu+ mu- using 49 signal events. In addition, we report branching ratios
for B+ -> K+ mu+ mu-, B0 -> K0 mu+ mu-, and B -> K*(892) mu+ mu- decays.Comment: 8 pages, 2 figures, 4 tables. Submitted to Phys. Rev. Let
Treatment with the calcineurin inhibitor and immunosuppressant cyclosporine A impairs sensorimotor gating in Dark Agouti rats
Rationale Calcineurin is a protein regulating cytokine expression in T lymphocytes and calcineurin inhibitors such as cyclosporine A (CsA) are widely used for immunosuppressive therapy. It also plays a functional role in distinct neuronal processes in the central nervous system. Disturbed information processing as seen in neuropsychiatric disorders is reflected by deficient sensorimotor gating, assessed as prepulse inhibition (PPI) of the acoustic startle response (ASR). Objective Patients who require treatment with immunosuppressive drugs frequently display neuropsychiatric alterations during treatment with calcineurin inhibitors. Importantly, knockout of calcineurin in the forebrain of mice is associated with cognitive impairments and symptoms of schizophrenia-like psychosis as seen after treatment with stimulants. Methods The present study investigated in rats effects of systemic acute and subchronic administration of CsA on sensorimotor gating. Following a single injection with effective doses of CsA, adult healthy male Dark Agouti rats were tested for PPI. For subchronic treatment, rats were injected daily with the same doses of CsA for 1 week before PPI was assessed. Since calcineurin works as a modulator of the dopamine pathway, activity of the enzyme tyrosine hydroxylase was measured in the prefrontal cortex and striatum after accomplishment of the study. Results Acute and subchronic treatment with the calcineurin inhibitor CsA disrupted PPI at a dose of 20 mg/kg. Concomitantly, following acute CsA treatment, tyrosine hydroxylase activity was reduced in the prefrontal cortex, which suggests that dopamine synthesis was downregulated, potentially reflecting a stimulatory impact of CsA on this neurotransmitter system. Conclusions The results support experimental and clinical evidence linking impaired calcineurin signaling in the central nervous system to the pathophysiology of neuropsychiatric symptoms. Moreover, these findings suggest that therapy with calcineurin inhibitors may be a risk factor for developing neurobehavioral alterations as observed after the abuse of psychomotor stimulant drugs
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
Measurement of the Production Cross Section and Search for Anomalous and Couplings in Collisions at TeV
This Letter describes the current most precise measurement of the boson
pair production cross section and most sensitive test of anomalous
and couplings in collisions at a center-of-mass energy of 1.96
TeV. The candidates are reconstructed from decays containing two charged
leptons and two neutrinos, where the charged leptons are either electrons or
muons. Using data collected by the CDF II detector from 3.6 fb of
integrated luminosity, a total of 654 candidate events are observed with an
expected background contribution of events. The measured total
cross section is pb, which is in good agreement
with the standard model prediction. The same data sample is used to place
constraints on anomalous and couplings.Comment: submitted to Phys. Rev. Let
Search for the standard model Higgs boson decaying to a bb pair in events with one charged lepton and large missing transverse energy using the full CDF data set
We present a search for the standard model Higgs boson produced in
association with a W boson in sqrt(s) = 1.96 TeV p-pbar collision data
collected with the CDF II detector at the Tevatron corresponding to an
integrated luminosity of 9.45 fb-1. In events consistent with the decay of the
Higgs boson to a bottom-quark pair and the W boson to an electron or muon and a
neutrino, we set 95% credibility level upper limits on the WH production cross
section times the H->bb branching ratio as a function of Higgs boson mass. At a
Higgs boson mass of 125 GeV/c2 we observe (expect) a limit of 4.9 (2.8) times
the standard model value.Comment: Submitted to Phys. Rev. Lett (v2 contains clarifications suggested by
PRL
- …
