652 research outputs found

    Energy cascade and scaling in supersonic isothermal turbulence

    Full text link
    Supersonic turbulence plays an important role in a number of extreme astrophysical and terrestrial environments, yet its understanding remains rudimentary. We use data from a three-dimensional simulation of supersonic isothermal turbulence to reconstruct an exact fourth-order relation derived analytically from the Navier-Stokes equations (Galtier and Banerjee, Phys. Rev. Lett., vol. 107, 2011, p. 134501). Our analysis supports a Kolmogorov-like inertial energy cascade in supersonic turbulence previously discussed on a phenomenological level. We show that two compressible analogues of the four-fifths law exist describing fifth- and fourth-order correlations, but only the fourth-order relation remains `universal' in a wide range of Mach numbers from incompressible to highly compressible regimes. A new approximate relation valid in the strongly supersonic regime is derived and verified. We also briefly discuss the origin of bottleneck bumps in simulations of compressible turbulence.Comment: Accepted to JFM Rapids, 11 pages, 6 figure

    On the Density Distribution in Star-forming Interstellar Clouds

    Full text link
    We use deep adaptive mesh refinement simulations of isothermal self-gravitating supersonic turbulence to study the imprints of gravity on the mass density distribution in molecular clouds. The simulations show that the density distribution in self-gravitating clouds develops an extended power-law tail at high densities on top of the usual lognormal. We associate the origin of the tail with self-similar collapse solutions and predict the power index values in the range from -7/4 to -3/2 that agree with both simulations and observations of star-forming molecular clouds.Comment: 5 pages, 3 color figures; published versio

    Scaling Laws and Intermittency in Highly Compressible Turbulence

    Get PDF
    We use large-scale three-dimensional simulations of supersonic Euler turbulence to study the physics of a highly compressible cascade. Our numerical experiments describe non-magnetized driven turbulent flows with an isothermal equation of state and an rms Mach number of 6. We find that the inertial range velocity scaling deviates strongly from the incompressible Kolmogorov laws. We propose an extension of Kolmogorov's K41 phenomenology that takes into account compressibility by mixing the velocity and density statistics and preserves the K41 scaling of the density-weighted velocity v=rho^{1/3}u. We show that low-order statistics of 'v' are invariant with respect to changes in the Mach number. For instance, at Mach 6 the slope of the power spectrum of 'v' is -1.69 and the third-order structure function of 'v' scales linearly with separation. We directly measure the mass dimension of the "fractal" density distribution in the inertial subrange, D_m=2.4, which is similar to the observed fractal dimension of molecular clouds and agrees well with the cascade phenomenology.Comment: 7 pages, 3 figures; in press, AIP Conference Proceedings: "Turbulence and Nonlinear Processes in Astrophysical Plasmas", Waikiki Beach, Hawaii, March 21, 200

    Flux Correlations in Supersonic Isothermal Turbulence

    Full text link
    Using data from a large-scale three-dimensional simulation of supersonic isothermal turbulence, we have tested the validity of an exact flux relation derived analytically from the Navier--Stokes equation by Falkovich, Fouxon and Oz [2010 New relations for correlation functions in Navier--Stokes turbulence. J. Fluid Mech. 644, 465]. That relation, for compressible barotropic fluids, was derived assuming turbulence generated by a large-scale force. However, compressible turbulence in simulations is usually initialized and maintained by a large-scale acceleration, as in gravity-driven astrophysical flows. We present a new approximate flux relation for isothermal turbulence driven by a large-scale acceleration, and find it in reasonable agreement with the simulation results.Comment: 10 pages, 5 figures, accepted for publication in the Journal of Fluid Mechanic

    The Santa Fe Light Cone Simulation Project: I. Confusion and the WHIM in Upcoming Sunyaev-Zel'dovich Effect Surveys

    Full text link
    We present the first results from a new generation of simulated large sky coverage (~100 square degrees) Sunyaev-Zeldovich effect (SZE) cluster surveys using the cosmological adaptive mesh refinement N-body/hydro code Enzo. We have simulated a very large (512^3h^{-3}Mpc^3) volume with unprecedented dynamic range. We have generated simulated light cones to match the resolution and sensitivity of current and future SZE instruments. Unlike many previous studies of this type, our simulation includes unbound gas, where an appreciable fraction of the baryons in the universe reside. We have found that cluster line-of-sight overlap may be a significant issue in upcoming single-dish SZE surveys. Smaller beam surveys (~1 arcmin) have more than one massive cluster within a beam diameter 5-10% of the time, and a larger beam experiment like Planck has multiple clusters per beam 60% of the time. We explore the contribution of unresolved halos and unbound gas to the SZE signature at the maximum decrement. We find that there is a contribution from gas outside clusters of ~16% per object on average for upcoming surveys. This adds both bias and scatter to the deduced value of the integrated SZE, adding difficulty in accurately calibrating a cluster Y-M relationship. Finally, we find that in images where objects with M > 5x10^{13} M_{\odot} have had their SZE signatures removed, roughly a third of the total SZE flux still remains. This gas exists at least partially in the Warm Hot Intergalactic Medium (WHIM), and will possibly be detectable with the upcoming generation of SZE surveys.Comment: 14 pages, 13 figures, version accepted to ApJ. Major revisions mad

    The Statistics of Supersonic Isothermal Turbulence

    Full text link
    We present results of large-scale three-dimensional simulations of supersonic Euler turbulence with the piecewise parabolic method and multiple grid resolutions up to 2048^3 points. Our numerical experiments describe non-magnetized driven turbulent flows with an isothermal equation of state and an rms Mach number of 6. We discuss numerical resolution issues and demonstrate convergence, in a statistical sense, of the inertial range dynamics in simulations on grids larger than 512^3 points. The simulations allowed us to measure the absolute velocity scaling exponents for the first time. The inertial range velocity scaling in this strongly compressible regime deviates substantially from the incompressible Kolmogorov laws. The slope of the velocity power spectrum, for instance, is -1.95 compared to -5/3 in the incompressible case. The exponent of the third-order velocity structure function is 1.28, while in incompressible turbulence it is known to be unity. We propose a natural extension of Kolmogorov's phenomenology that takes into account compressibility by mixing the velocity and density statistics and preserves the Kolmogorov scaling of the power spectrum and structure functions of the density-weighted velocity v=\rho^{1/3}u. The low-order statistics of v appear to be invariant with respect to changes in the Mach number. For instance, at Mach 6 the slope of the power spectrum of v is -1.69, and the exponent of the third-order structure function of v is unity. We also directly measure the mass dimension of the "fractal" density distribution in the inertial subrange, D_m = 2.4, which is similar to the observed fractal dimension of molecular clouds and agrees well with the cascade phenomenology.Comment: 15 pages, 19 figures, ApJ v665, n2, 200

    Field exposed water in a nanopore: liquid or vapour?

    Full text link
    We study the behavior of ambient temperature water under the combined effects of nanoscale confinement and applied electric field. Using molecular simulations we analyze the thermodynamic causes of field-induced expansion at some, and contraction at other conditions. Repulsion among parallel water dipoles and mild weakening of interactions between partially aligned water molecules prove sufficient to destabilize the aqueous liquid phase in isobaric systems in which all water molecules are permanently exposed to a uniform electric field. At the same time, simulations reveal comparatively weak field-induced perturbations of water structure upheld by flexible hydrogen bonding. In open systems with fixed chemical potential, these perturbations do not suffice to offset attraction of water into the field; additional water is typically driven from unperturbed bulk phase to the field-exposed region. In contrast to recent theoretical predictions in the literature, our analysis and simulations confirm that classical electrostriction characterizes usual electrowetting behavior in nanoscale channels and nanoporous materials.Comment: 20 pages, 6 figures + T.O.C. figure, in press in PCC

    Space Robotics: AWIMR an Overview

    Get PDF
    This viewgraph presentation reviews the usages of Autonomous Walking Inspection and Maintenance Robots (AWIMR) in space. Some of the uses that these robots in support of space exploration can have are: inspection of a space craft, cleaning, astronaut assistance, assembly of a structure, repair of structures, and replenishment of supplies
    corecore