68 research outputs found

    Calpain inhibition mediates autophagy-dependent protection against polyglutamine toxicity.

    Get PDF
    Over recent years, accumulated evidence suggests that autophagy induction is protective in animal models of a number of neurodegenerative diseases. Intense research in the field has elucidated different pathways through which autophagy can be upregulated and it is important to establish how modulation of these pathways impacts upon disease progression in vivo and therefore which, if any, may have further therapeutic relevance. In addition, it is important to understand how alterations in these target pathways may affect normal physiology when constitutively modulated over a long time period, as would be required for treatment of neurodegenerative diseases. Here we evaluate the potential protective effect of downregulation of calpains. We demonstrate, in Drosophila, that calpain knockdown protects against the aggregation and toxicity of proteins, like mutant huntingtin, in an autophagy-dependent fashion. Furthermore, we demonstrate that, overexpression of the calpain inhibitor, calpastatin, increases autophagosome levels and is protective in a mouse model of Huntington's disease, improving motor signs and delaying the onset of tremors. Importantly, long-term inhibition of calpains did not result in any overt deleterious phenotypes in mice. Thus, calpain inhibition, or activation of autophagy pathways downstream of calpains, may be suitable therapeutic targets for diseases like Huntington's disease.This is the published version of the manuscript. It is available online from NPG in Cell Death and Differentiaiton here: http://www.nature.com/cdd/journal/vaop/ncurrent/full/cdd2014151a.html

    Association between leisure time physical activity preference and behavior: evidence from the China Health & Nutrition Survey, 2004–2011

    Get PDF
    Abstract Background Previous studies have suggested that food preference is a good indicator of actual food intake and that sedentary activity preference is a significant predictor of lower physical activity level. But no studies have examined the direct relationship between leisure time physical activity (LTPA) preferences and actual LTPA behavior, especially studies using longitudinal data. This study seeks to determine the association between these two variables, and to assess whether the association differs between urban and rural areas in China. Methods A total of 2427 Chinese adults were included in the analysis. Spearman correlation coefficients were used to test the association between leisure time physical activity preference and behavior, followed by multiple logistic regressions to further examine the association after adjusting for possible confounding variables. Urban-rural differences in the association were investigated through stratified analysis. Results In the sample, 63.0% were from urban areas, 47.4% were men, and the mean age was 40. Adjusted estimates based on logistic regression show that LTPA preference was a significant predictor of actual LTPA behavior (OR = 1.05, 95% CI = 1.01–1.09). The correlation was found to be significant among urban residents (OR = 1.06, 95% CI = 1.01–1.10), but not in rural residents. Conclusions The study illustrates the predictive value of LTPA preference for actual LTPA behavior. Changing LTPA preference to promote LTPA may be helpful in preventing and controlling chronic disease in China

    Polyglutamine tracts regulate beclin 1-dependent autophagy

    Get PDF
    Nine neurodegenerative diseases are caused by expanded polyglutamine (polyQ) tracts in different proteins, such as huntingtin in Huntington's disease and ataxin 3 in spinocerebellar ataxia type 3 (SCA3). Age at onset of disease decreases with increasing polyglutamine length in these proteins and the normal length also varies. PolyQ expansions drive pathogenesis in these diseases, as isolated polyQ tracts are toxic, and an N-terminal huntingtin fragment comprising exon 1, which occurs in vivo\textit{in vivo} as a result of alternative splicing, causes toxicity. Although such mutant proteins are prone to aggregation, toxicity is also associated with soluble forms of the proteins. The function of the polyQ tracts in many normal cytoplasmic proteins is unclear. One such protein is the deubiquitinating enzyme ataxin 3 (refs 7, 8), which is widely expressed in the brain. Here we show that the polyQ domain enables wild-type ataxin 3 to interact with beclin 1, a key initiator of autophagy. This interaction allows the deubiquitinase activity of ataxin 3 to protect beclin 1 from proteasome-mediated degradation and thereby enables autophagy. Starvation-induced autophagy, which is regulated by beclin 1, was particularly inhibited in ataxin-3-depleted human cell lines and mouse primary neurons, and in vivo\textit{in vivo} in mice. This activity of ataxin 3 and its polyQ-mediated interaction with beclin 1 was competed for by other soluble proteins with polyQ tracts in a length-dependent fashion. This competition resulted in impairment of starvation-induced autophagy in cells expressing mutant huntingtin exon 1, and this impairment was recapitulated in the brains of a mouse model of Huntington's disease and in cells from patients. A similar phenomenon was also seen with other polyQ disease proteins, including mutant ataxin 3 itself. Our data thus describe a specific function for a wild-type polyQ tract that is abrogated by a competing longer polyQ mutation in a disease protein, and identify a deleterious function of such mutations distinct from their propensity to aggregate.We thank the Wellcome Trust (Principal Research Fellowship to D.C.R. (095317/Z/11/Z), Wellcome Trust Strategic Grant to Cambridge Institute for Medical Research (100140/Z/12/Z)), National Institute for Health Research Biomedical Research Centre at Addenbrooke’s Hospital, and Addenbrooke’s Charitable Trust and Federation of European Biochemical Societies (FEBS Long-Term Fellowship to A.A.) for funding; R. Antrobus for mass spectrometry analysis; S. Luo for truncated HTT constructs; M. Jimenez-Sanchez and C. Karabiyik for assistance with the primary mouse cell cultures; and J. Lim and Z. Ignatova for reagents

    Does reading for pleasure support vocabulary learning? A naturalistic experiment to test the link between print exposure and vocabulary gain

    No full text
    Vocabulary is vital for accessing learning, yet marked vocabulary differences are apparent at school entry and closely linked to social disadvantage. Vocabulary knowledge can be taught directly, but this is time consuming and even the most ambitious programme could not cover all of the word meanings that are needed to access curriculum texts. A key route to vocabulary learning is independent reading. However, adolescents rarely read in their own time. To increase independent reading in this group, we have adapted a well-established behavior-change intervention as a novel way to encourage adolescents to read more. The intervention will involve goal-setting, feedback on this goal via text-messages, and rewards. We will also provide participants with commercially available fiction books to read in their own time, creating a natural setting for the intervention, whilst also tracking the words they encounter and learn
    corecore