333 research outputs found

    Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity

    Get PDF
    Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria

    Impacts of selected Ecological Focus Area options in European farmed landscapes on climate regulation and pollination services: a systematic map protocol

    Get PDF
    Background: This systematic map protocol responds to an urgent policy need to evaluate key environmental benefits of new compulsory greening measures in the European Union’s Common Agricultural Policy (CAP), with the aim of building a policy better linked to environmental performance. The systematic map will focus on Ecological Focus Areas (EFAs), in which larger arable farmers must dedicate 5% of their arable land to ecologically beneficial habitats, landscape features and land uses. The European Commission’s Joint Research Centre has used a software tool called the ‘EFA calculator’ to inform the European Commission about environmental benefits of EFA implementation. However, there are gaps in the EFA calculator’s coverage of ecosystem services, especially ‘global climate regulation’, and an opportunity to use systematic mapping methods to enhance its capture of evidence, in advance of forthcoming CAP reforms. We describe a method for assembling a database of relevant, peer-reviewed research conducted in all agricultural landscapes in Europe and neighbouring countries with similar biogeography, addressing the primary question: what are the impacts of selected EFA features in agricultural land on two policy-relevant ecosystem service outcomes—global climate regulation and pollination? The method is streamlined to allow results in good time for the current, time-limited opportunity to influence reforms of the CAP greening measures at European and Member State level. Methods: We will search four bibliographic databases in English, using a predefined and tested search string that focuses on a subset of EFA options and ecosystem service outcomes. The options and outcomes are selected as those with particular policy relevance and traction. Only articles in English will be included. We will screen search results at title, abstract and full text levels, recording the number of studies deemed non-relevant (with reasons at full text). A systematic map database that displays the meta-data (i.e. descriptive summary information about settings and methods) of relevant studies will be produced following full text assessment. The systematic map database will be published as a MS-Excel database. The nature and extent of the evidence base will be discussed, and the applicability of methods to convert the available evidence into EFA calculator scores will be assessed

    Pollination and biological control research: are we neglecting two billion smallholders

    Get PDF
    Food insecurity is a major world problem, with ca. 870 million people in the world being chronically undernourished. Most of these people live in tropical, developing regions and rely on smallholder farming for food security. Solving the problem of food insecurity is thought to depend, in part, on managing ecosystem services, such as the pollination of crops and the biological control of crop pests, to enhance or maintain food production. Our knowledge regarding regulating ecosystem services in smallholder-farmed (or dualistic) landscapes is limited and whilst pollination has been the focus of considerable research, the provision of natural enemy services, important for every crop worldwide, has been relatively neglected. In order to assess whether ecosystem-service research adequately represents smallholder-farmed landscapes, whilst also considering climatic region and national economic status, we examined the constituent studies of recent quantitative reviews relevant to biological control and pollination. No regulating ecosystem service meta-analysis, to our knowledge, has focussed on smallholder agriculture despite its importance to billions of peoples’ local food security. We found that whilst smallholdings contributed 16% of global farmland area and 83% of the global agricultural population (estimated using FAO’s World Census of Agriculture 2000) only 22 of 190 studies (12%), overall, came from smallholder-farmed landscapes. These smallholder studies mostly concerned coffee production (16 studies). Individual reviews of biological control were significantly and strongly biased towards data from large-scale farming in temperate regions. In contrast pollination reviews included more smallholder studies and were more balanced for climate regions. The high diversity of smallholder-farmed landscapes implies that more research will be needed to understand them compared to large-scale landscapes but we found far more research from the latter. We highlight that these skews in research effort have implications for sustainable intensification and the food security of billions in the developing world. In particular we urge for balance in future ecosystem-services research and synthesis by greater consideration of a diverse range of smallholder-farmed landscapes in Africa and continental Asia

    Thresholds of riparian forest use by terrestrial mammals in a fragmented Amazonian deforestation frontier

    Get PDF
    Species persistence in fragmented landscapes is intimately related to the quality, structure, and context of remaining habitat remnants. Riparian vegetation is legally protected within private landholdings in Brazil, so we quantitatively assessed occupancy patterns of terrestrial mammals in these remnants, examining under which circumstances different species effectively use them. We selected 38 riparian forest patches and five comparable riparian sites within continuous forest, at which we installed four to five camera-traps per site (199 camera-trap stations). Terrestrial mammal assemblages were sampled for 60 days per station during the dry seasons of 2013 and 2014. We modelled species occupancy and detection probabilities within riparian forest remnants, and examined the effects of patch size, habitat quality, and landscape structure on occupancy probabilities. We then scaled-up modelled occupancies to all 1915 riparian patches throughout the study region to identify which remnants retain the greatest potential to work as habitat for terrestrial vertebrates. Of the ten species for which occupancy was modelled, six responded to forest quality (remnant degradation, cattle intrusion, palm aggregations, and understorey density) or structure (remnant width, isolation, length, and area of the patch from which it originates). Patch suitability was lower considering habitat quality than landscape structure, and virtually all riparian remnants were unsuitable to maintain a high occupancy probability for all species that responded to forest patch quality or structure. Beyond safeguarding legal compliance concerning riparian remnant amount, ensuring terrestrial vertebrate persistence in fragmented landscapes will require curbing the drivers of forest degradation within private landholdings

    Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen

    Get PDF
    The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca's large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells

    Urban Biodiversity and Landscape Ecology: Patterns, Processes and Planning

    Get PDF
    Effective planning for biodiversity in cities and towns is increasingly important as urban areas and their human populations grow, both to achieve conservation goals and because ecological communities support services on which humans depend. Landscape ecology provides important frameworks for understanding and conserving urban biodiversity both within cities and considering whole cities in their regional context, and has played an important role in the development of a substantial and expanding body of knowledge about urban landscapes and communities. Characteristics of the whole city including size, overall amount of green space, age and regional context are important considerations for understanding and planning for biotic assemblages at the scale of entire cities, but have received relatively little research attention. Studies of biodiversity within cities are more abundant and show that longstanding principles regarding how patch size, configuration and composition influence biodiversity apply to urban areas as they do in other habitats. However, the fine spatial scales at which urban areas are fragmented and the altered temporal dynamics compared to non-urban areas indicate a need to apply hierarchical multi-scalar landscape ecology models to urban environments. Transferring results from landscape-scale urban biodiversity research into planning remains challenging, not least because of the requirements for urban green space to provide multiple functions. An increasing array of tools is available to meet this challenge and increasingly requires ecologists to work with planners to address biodiversity challenges. Biodiversity conservation and enhancement is just one strand in urban planning, but is increasingly important in a rapidly urbanising world

    XMM - Newton observations of Markarian 421

    Get PDF
    The BL Lac object Mrk 421 was observed on May 25, 2000 during the XMM - Newton CAL/PV phase. The high throughput of the X-ray telescopes and the spectral capabilities of the instruments allow an uninterrupted temporal and spectral study of the source with unprecedented time resolution. Mrk 421 was found at a relatively high state with a 2-6 keV flux of (1.3 - 1.9)E-10 erg cm**-2 s **-1. The observed intensity variations by more than a factor of three at highest X-ray energies are accompanied by complex spectral variations with only a small time lag (tau = 265 {+116} {-102} seconds) between the hard and soft photons. The (0.2-10) keV spectrum can be well fitted by a broken power law and no absorption structures are found in the source spectrum at the high spectral resolution of the transmission gratings.Comment: 6 pages, 5 figures; accepted for publication in A&A special issue on first results from XM
    corecore