300 research outputs found
Entropy, Ergodicity and Stem Cell Multipotency
Populations of mammalian stem cells commonly exhibit considerable cell-cell
variability. However, the functional role of this diversity is unclear. Here,
we analyze expression fluctuations of the stem cell surface marker Sca1 in
mouse hematopoietic progenitor cells using a simple stochastic model and find
that the observed dynamics naturally lie close to a critical state, thereby
producing a diverse population that is able to respond rapidly to environmental
changes. We propose an information-theoretic interpretation of these results
that views cellular multipotency as an instance of maximum entropy statistical
inference.Comment: 6 pages, 3 figure
Chromatic transit light curves of disintegrating rocky planets
Context. Kepler observations have revealed a class of short period
exoplanets, of which Kepler-1520 b is the prototype, which have comet-like dust
tails thought to be the result of small, rocky planets losing mass. The shape
and chromaticity of the transits constrain the properties of the dust particles
originating from the planet's surface, offering a unique opportunity to probe
the composition and geophysics of rocky exoplanets.
Aims. We aim to approximate the average Kepler long-cadence light curve of
Kepler-1520 b and investigate how the optical thickness and transit
cross-section of a general dust tail can affect the observed wavelength
dependence and depth of transit light curves.
Methods. We developed a new 3D model that ejects sublimating particles from
the planet surface to build up a dust tail, assuming it to be optically thin,
and used 3D radiative transfer computations that fully treat scattering using
the distribution of hollow spheres (DHS) method, to generate transit light
curves between 0.45 and 2.5 m.
Results. We show that the transit depth is wavelength independent for
optically thick tails, potentially explaining why only some observations
indicate a wavelength dependence. From the 3D nature of our simulated tails, we
show that their transit cross-sections are related to the component of particle
ejection velocity perpendicular to the planet's orbital plane and use this to
derive a minimum ejection velocity of 1.2 kms. To fit the average
transit depth of Kepler-1520 b of 0.87%, we require a high dust mas-loss rate
of 7 80 M Gyr which implies planet lifetimes that may be
inconsistent with the observed sample. Therefore, these mass-loss rates should
be considered to be upper limits.Comment: 22 pages, 22 figures, accepted for publication in A&
Dusty tails of evaporating exoplanets. II. Physical modelling of the KIC 12557548b light curve
Evaporating rocky exoplanets, such as KIC 12557548b, eject large amounts of
dust grains, which can trail the planet in a comet-like tail. When such objects
occult their host star, the resulting transit signal contains information about
the dust in the tail. We aim to use the detailed shape of the Kepler light
curve of KIC 12557548b to constrain the size and composition of the dust grains
that make up the tail, as well as the mass loss rate of the planet. Using a
self-consistent numerical model of the dust dynamics and sublimation, we
calculate the shape of the tail by following dust grains from their ejection
from the planet to their destruction due to sublimation. From this dust cloud
shape, we generate synthetic light curves (incorporating the effects of
extinction and angle-dependent scattering), which are then compared with the
phase-folded Kepler light curve. We explore the free-parameter space thoroughly
using a Markov chain Monte Carlo method. Our physics-based model is capable of
reproducing the observed light curve in detail. Good fits are found for initial
grain sizes between 0.2 and 5.6 micron and dust mass loss rates of 0.6 to 15.6
M_earth/Gyr (2-sigma ranges). We find that only certain combinations of
material parameters yield the correct tail length. These constraints are
consistent with dust made of corundum (Al2O3), but do not agree with a range of
carbonaceous, silicate, or iron compositions. Using a detailed, physically
motivated model, it is possible to constrain the composition of the dust in the
tails of evaporating rocky exoplanets. This provides a unique opportunity to
probe to interior composition of the smallest known exoplanets.Comment: 18 pages, 11 figures, A&A accepte
Greg Doran, My Shakespeare: A Director's Journey through the First Folio (London: Methuen, 2023)
Making good citizens : national identity, religion and Liberalism among the Irish elite c.1800-1850.
SIGLEAvailable from British Library Document Supply Centre-DSC:DX202319 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
Spectroscopic Transit Search: a self-calibrating method for detecting planets around bright stars
We search for transiting exoplanets around the star Pictoris using
high resolution spectroscopy and Doppler imaging that removes the need for
standard star observations. These data were obtained on the VLT with UVES
during the course of an observing campaign throughout 2017 that monitored the
Hill sphere transit of the exoplanet Pictoris b. We utilize line
profile tomography as a method for the discovery of transiting exoplanets. By
measuring the exoplanet distortion of the stellar line profile, we remove the
need for reference star measurements. We demonstrate the method with white
noise simulations, and then look at the case of Pictoris, which is a
Scuti pulsator. We describe a method to remove the stellar pulsations
and perform a search for any transiting exoplanets in the resultant data set.
We inject fake planet transits with varying orbital periods and planet radii
into the spectra and determine the recovery fraction. In the photon noise
limited case we can recover planets down to a Neptune radius with an 80%
success rate, using an 8 m telescope with a spectrograph and 20
minutes of observations per night. The pulsations of Pictoris limit our
sensitivity to Jupiter-sized planets, but a pulsation removal algorithm
improves this limit to Saturn-sized planets. We present two planet candidates,
but argue that their signals are most likely caused by other phenomena. We have
demonstrated a method for searching for transiting exoplanets that (i) does not
require ancillary calibration observations, (ii) can work on any star whose
rotational broadening can be resolved with a high spectral dispersion
spectrograph and (iii) provides the lowest limits so far on the radii of
transiting Jupiter-sized exoplanets around Pictoris with orbital
periods from 15 days to 200 days with >50% coverage.Comment: Accepted for publication in A&A, 8 pages, 8 figures. The Github
repository can be found at
https://github.com/lennartvansluijs/Spectroscopic-Transit-Searc
Search for an exosphere in sodium and calcium in the transmission spectrum of exoplanet 55 Cancri e
[Abridged] The aim of this work is to search for an absorption signal from
exospheric sodium (Na) and singly ionized calcium (Ca) in the optical
transmission spectrum of the hot rocky super-Earth 55 Cancri e. Although the
current best-fitting models to the planet mass and radius require a possible
atmospheric component, uncertainties in the radius exist, making it possible
that 55 Cancri e could be a hot rocky planet without an atmosphere. High
resolution (R110000) time-series spectra of five transits of 55 Cancri e,
obtained with three different telescopes (UVES/VLT, HARPS/ESO 3.6m &
HARPS-N/TNG) were analysed. Targeting the sodium D lines and the calcium H and
K lines, the potential planet exospheric signal was filtered out from the much
stronger stellar and telluric signals, making use of the change of the radial
component of the orbital velocity of the planet over the transit from -57 to
+57 km/sec. Combining all five transit data sets, we detect a signal
potentially associated with sodium in the planet exosphere at a statistical
significance level of 3. Combining the four HARPS transits that cover
the calcium H and K lines, we also find a potential signal from ionized calcium
(4.1 ). Interestingly, this latter signal originates from just one of
the transit measurements - with a 4.9 detection at this epoch.
Unfortunately, due to the low significance of the measured sodium signal and
the potentially variable Ca signal, we estimate the p-values of these
signals to be too high (corresponding to <4) to claim unambiguous
exospheric detections. By comparing the observed signals with artificial
signals injected early in the analysis, the absorption by Na and Ca are
estimated to be at a level of approximately 2.3 and 7.0 respectively, relative to the stellar spectrum.Comment: 15 pages, 8 figures, submission updated after English language
editing, submission updated to correct a mistaken cross-reference noticed in
A&A proo
- …
