4,425 research outputs found

    Comment: Demystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data

    Full text link
    Comment on ``Demystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data'' [arXiv:0804.2958]Comment: Published in at http://dx.doi.org/10.1214/07-STS227C the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Learning to Generate Images with Perceptual Similarity Metrics

    Full text link
    Deep networks are increasingly being applied to problems involving image synthesis, e.g., generating images from textual descriptions and reconstructing an input image from a compact representation. Supervised training of image-synthesis networks typically uses a pixel-wise loss (PL) to indicate the mismatch between a generated image and its corresponding target image. We propose instead to use a loss function that is better calibrated to human perceptual judgments of image quality: the multiscale structural-similarity score (MS-SSIM). Because MS-SSIM is differentiable, it is easily incorporated into gradient-descent learning. We compare the consequences of using MS-SSIM versus PL loss on training deterministic and stochastic autoencoders. For three different architectures, we collected human judgments of the quality of image reconstructions. Observers reliably prefer images synthesized by MS-SSIM-optimized models over those synthesized by PL-optimized models, for two distinct PL measures (1\ell_1 and 2\ell_2 distances). We also explore the effect of training objective on image encoding and analyze conditions under which perceptually-optimized representations yield better performance on image classification. Finally, we demonstrate the superiority of perceptually-optimized networks for super-resolution imaging. Just as computer vision has advanced through the use of convolutional architectures that mimic the structure of the mammalian visual system, we argue that significant additional advances can be made in modeling images through the use of training objectives that are well aligned to characteristics of human perception

    Sexual Harassment and Title VII -- A Better Solution

    Get PDF

    Loss Function Based Ranking in Two-Stage, Hierarchical Models

    Get PDF
    Several authors have studied the performance of optimal, squared error loss (SEL) estimated ranks. Though these are effective, in many applications interest focuses on identifying the relatively good (e.g., in the upper 10%) or relatively poor performers. We construct loss functions that address this goal and evaluate candidate rank estimates, some of which optimize specific loss functions. We study performance for a fully parametric hierarchical model with a Gaussian prior and Gaussian sampling distributions, evaluating performance for several loss functions. Results show that though SEL-optimal ranks and percentiles do not specifically focus on classifying with respect to a percentile cut point, they perform very well over a broad range of loss functions. We compare inferences produced by the candidate estimates using data from The Community Tracking Study
    corecore