986 research outputs found
Highly-Resolved Numerical Simulation of the Turbulent Combustion Process in Experimental Burners
This paper presents investigations of experimentally well-characterised turbulent flames with highly-resolved Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS). The combustion process is modelled with a flamelet-based approach, which assumes that the local turbulent flame structure can be described by an ensemble of wrinkled laminar flames. Good agreements between the simulation results and experimental measurement data is achieved. The governing equations are discretised with the Finite Volume Method (FVM). The numerical implementation is tailored for massively parallel simulations on a large number of grid cells. The computational efficiency benefits from the applied simple grid structure and the use of non-blocking Message Passing Interface (MPI) parallelisation
Circular orbits and spin in black-hole initial data
The construction of initial data for black-hole binaries usually involves the
choice of free parameters that define the spins of the black holes and
essentially the eccentricity of the orbit. Such parameters must be chosen
carefully to yield initial data with the desired physical properties. In this
paper, we examine these choices in detail for the quasiequilibrium method
coupled to apparent-horizon/quasiequilibrium boundary conditions. First, we
compare two independent criteria for choosing the orbital frequency, the
"Komar-mass condition" and the "effective-potential method," and find excellent
agreement. Second, we implement quasi-local measures of the spin of the
individual holes, calibrate these with corotating binaries, and revisit the
construction of non-spinning black hole binaries. Higher-order effects, beyond
those considered in earlier work, turn out to be important. Without those,
supposedly non-spinning black holes have appreciable quasi-local spin;
furthermore, the Komar-mass condition and effective potential method agree only
when these higher-order effects are taken into account. We compute a new
sequence of quasi-circular orbits for non-spinning black-hole binaries, and
determine the innermost stable circular orbit of this sequence.Comment: 24 pages, 17 figures, accepted for publication in Physical Review D,
revtex4; Fixed error in computing proper separation and updated figures and
tables accordingly, added reference to Sec. IV.A, fixed minor error in Sec.
IV.B, added new data to Tables IV and V, fixed 1 reference, fixed error in
Eq. (A7b), included minor changes from PRD editin
Post-Newtonian Freely Specifiable Initial Data for Binary Black Holes in Numerical Relativity
Construction of astrophysically realistic initial data remains a central
problem when modelling the merger and eventual coalescence of binary black
holes in numerical relativity. The objective of this paper is to provide
astrophysically realistic freely specifiable initial data for binary black hole
systems in numerical relativity, which are in agreement with post-Newtonian
results. Following the approach taken by Blanchet, we propose a particular
solution to the time-asymmetric constraint equations, which represent a system
of two moving black holes, in the form of the standard conformal decomposition
of the spatial metric and the extrinsic curvature. The solution for the spatial
metric is given in symmetric tracefree form, as well as in Dirac coordinates.
We show that the solution differs from the usual post-Newtonian metric up to
the 2PN order by a coordinate transformation. In addition, the solutions,
defined at every point of space, differ at second post-Newtonian order from the
exact, conformally flat, Bowen-York solution of the constraints.Comment: 41 pages, no figures, accepted for publication in Phys. Rev. D,
significant revision in presentation (including added references and
corrected typos
The Loschmidt Echo as a robust decoherence quantifier for many-body systems
We employ the Loschmidt Echo, i.e. the signal recovered after the reversal of
an evolution, to identify and quantify the processes contributing to
decoherence. This procedure, which has been extensively used in single particle
physics, is here employed in a spin ladder. The isolated chains have 1/2 spins
with XY interaction and their excitations would sustain a one-body like
propagation. One of them constitutes the controlled system S whose reversible
dynamics is degraded by the weak coupling with the uncontrolled second chain,
i.e. the environment E. The perturbative SE coupling is swept through arbitrary
combinations of XY and Ising like interactions, that contain the standard
Heisenberg and dipolar ones. Different time regimes are identified for the
Loschmidt Echo dynamics in this perturbative configuration. In particular, the
exponential decay scales as a Fermi golden rule, where the contributions of the
different SE terms are individually evaluated and analyzed. Comparisons with
previous analytical and numerical evaluations of decoherence based on the
attenuation of specific interferences, show that the Loschmidt Echo is an
advantageous decoherence quantifier at any time, regardless of the S internal
dynamics.Comment: 12 pages, 6 figure
Aligned Spins: Orbital Elements, Decaying Orbits, and Last Stable Circular Orbit to high post-Newtonian Orders
In this article the quasi-Keplerian parameterisation for the case that spins
and orbital angular momentum in a compact binary system are aligned or
anti-aligned with the orbital angular momentum vector is extended to 3PN
point-mass, next-to-next-to-leading order spin-orbit, next-to-next-to-leading
order spin(1)-spin(2), and next-to-leading order spin-squared dynamics in the
conservative regime. In a further step, we use the expressions for the
radiative multipole moments with spin to leading order linear and quadratic in
both spins to compute radiation losses of the orbital binding energy and
angular momentum. Orbital averaged expressions for the decay of energy and
eccentricity are provided. An expression for the last stable circular orbit is
given in terms of the angular velocity type variable .Comment: 30 pages, 2 figures, v2: update to match published versio
Gravitational radiation reaction in compact binary systems: Contribution of the quadrupole-monopole interaction
The radiation reaction in compact spinning binaries on eccentric orbits due
to the quadrupole-monopole interaction is studied. This contribution is of
second post-Newtonian order. As result of the precession of spins the magnitude
of the orbital angular momentum is not conserved. Therefore a proper
characterization of the perturbed radial motion is provided by the energy
and angular average . As powerful computing tools, the generalized
true and eccentric anomaly parametrizations are introduced. Then the secular
losses in energy and magnitude of orbital angular momentum together with the
secular evolution of the relative orientations of the orbital angular momentum
and spins are found for eccentric orbits by use of the residue theorem. The
circular orbit limit of the energy loss agrees with Poisson's earlier result.Comment: accepted for publication in Phys. Rev.
Reducing orbital eccentricity in binary black hole simulations
Binary black hole simulations starting from quasi-circular (i.e., zero radial
velocity) initial data have orbits with small but non-zero orbital
eccentricities. In this paper the quasi-equilibrium initial-data method is
extended to allow non-zero radial velocities to be specified in binary black
hole initial data. New low-eccentricity initial data are obtained by adjusting
the orbital frequency and radial velocities to minimize the orbital
eccentricity, and the resulting ( orbit) evolutions are compared with
those of quasi-circular initial data. Evolutions of the quasi-circular data
clearly show eccentric orbits, with eccentricity that decays over time. The
precise decay rate depends on the definition of eccentricity; if defined in
terms of variations in the orbital frequency, the decay rate agrees well with
the prediction of Peters (1964). The gravitational waveforms, which contain
cycles in the dominant l=m=2 mode, are largely unaffected by the
eccentricity of the quasi-circular initial data. The overlap between the
dominant mode in the quasi-circular evolution and the same mode in the
low-eccentricity evolution is about 0.99.Comment: 27 pages, 9 figures; various minor clarifications; accepted to the
"New Frontiers" special issue of CQ
Gravitational radiation reaction in compact binary systems: Contribution of the magnetic dipole-magnetic dipole interaction
We study the gravitational radiation reaction in compact binary systems
composed of neutron stars with spin and huge magnetic dipole moments
(magnetars). The magnetic dipole moments undergo a precessional motion about
the respective spins. At sufficiently high values of the magnetic dipole
moments, their interaction generates second post-Newtonian order contributions
both to the equations of motion and to the gravitational radiation escaping the
system. We parametrize the radial motion and average over a radial period in
order to find the secular contributions to the energy and magnitude of the
orbital angular momentum losses, in the generic case of \textit{eccentric}
orbits. Similarly as for the spin-orbit, spin-spin, quadrupole-monopole
interactions, here too we deduce the secular evolution of the relative
orientations of the orbital angular momentum and spins. These equations,
supplemented by the evolution equations for the angles characterizing the
orientation of the dipole moments form a first order differential system, which
is closed. The circular orbit limit of the energy loss agrees with Ioka and
Taniguchi's earlier result
Spin-spin effects in radiating compact binaries
The dynamics of a binary system with two spinning components on an eccentric
orbit is studied, with the inclusion of the spin-spin interaction terms
appearing at the second post-Newtonian order. A generalized true anomaly
parametrization properly describes the radial component of the motion. The
average over one radial period of the magnitude of the orbital angular momentum
is found to have no nonradiative secular change. All spin-spin terms
in the secular radiative loss of the energy and magnitude of orbital angular
momentum are given in terms of and other constants of the motion.
Among them, self-interaction spin effects are found, representing the second
post-Newtonian correction to the 3/2 post-Newtonian order Lense-Thirring
approximation.Comment: 12 pages, to appear in Phys. Rev.
Spin effects in gravitational radiation backreaction II. Finite mass effects
A convenient formalism for averaging the losses produced by gravitational
radiation backreaction over one orbital period was developed in an earlier
paper. In the present paper we generalize this formalism to include the case of
a closed system composed from two bodies of comparable masses, one of them
having the spin S.
We employ the equations of motion given by Barker and O'Connell, where terms
up to linear order in the spin (the spin-orbit interaction terms) are kept. To
obtain the radiative losses up to terms linear in the spin, the equations of
motion are taken to the same order. Then the magnitude L of the angular
momentum L, the angle kappa subtended by S and L and the energy E are
conserved. The analysis of the radial motion leads to a new parametrization of
the orbit.
From the instantaneous gravitational radiation losses computed by Kidder the
leading terms and the spin-orbit terms are taken. Following Apostolatos,
Cutler, Sussman and Thorne, the evolution of the vectors S and L in the
momentary plane spanned by these vectors is separated from the evolution of the
plane in space. The radiation-induced change in the spin is smaller than the
leading-order spin terms in the momentary angular momentum loss. This enables
us to compute the averaged losses in the constants of motion E, L and L_S=L cos
kappa. In the latter, the radiative spin loss terms average to zero. An
alternative description using the orbital elements a,e and kappa is given.
The finite mass effects contribute terms, comparable in magnitude, to the
basic, test-particle spin terms in the averaged losses.Comment: 12 pages, 1 figure, Phys.Rev.D15, March, 199
- …
