1,543 research outputs found
Controls on Highly Siderophile Element Concentrations in Martian Basalt: Sulfide Saturation and Under-Saturation
Highly siderophile elements (HSE; Re, Au and the platinum group elements) in shergottites exhibit a wide range from very high, similar to the terrestrial mantle, to very low, similar to sulfide saturated mid ocean ridge basalt (e.g., [1]). This large range has been difficult to explain without good constraints on sulfide saturation or under-saturation [2]. A new model for prediction of sulfide saturation places new constraints on this problem [3]. Shergottite data: For primitive shergottites, pressure and temperature estimates are between 1.2-1.5 GPa, and 1350-1470 C [4]. The range of oxygen fugacities is from FMQ-2 to IW, where the amount of Fe2O3 is low and thus does not have a significant effect on the S saturation values. Finally, the bulk compositions of shergottites have been reported in many recent studies (e.g., [5]). All of this information will be used to test whether shergottites are sulfide saturated [3]. Modeling values and results: The database for HSE partition coefficients has been growing with many new data for silicates and oxides [6-8] to complement a large sulfide database [9- 11]. Combining these data with simple batch melting models allows HSE contents of mantle melts to be estimated for sulfide-bearing vs. sulfide-free mantle. Combining such models with fractional crystallization modeling (e.g., [12]) allows HSE contents of more evolved liquids to be modeled. Most primitive shergottites have high HSE contents (and low S contents) that can be explained by sulfide under-saturated melting of the mantle. An exception is Dhofar 019 which has high S contents and very low HSE contents suggesting sulfide saturation. Most evolved basaltic shergottites have lower S contents than saturation, and intermediate HSE contents that can be explained by olivine, pyroxene, and chromite fractionation. An exception is EET A79001 lithology B, which has very low HSE contents and S contents higher than sulfide saturation values . evidence for sulfide saturation during late fractional crystallization. These results show that shergottite HSE contents are controlled by silicates, oxides, and sulfides. In addition, the mantle producing the most primitive shergottites did not contain near chondritic relative ratios of the HSEs like the terrestrial mantle, and did not experience a late chondritic veneer
Depletion of Vandium in Planetary Mantles: Controlled by Metal, Oxide, or Silicate?
Vanadium concentrations in planetary mantles can provide information about the conditions during early accretion and differentiation. Because V is a slightly siderophile element, it is usually assumed that any depletion would be due to core formation and metal-silicate equilibrium. However, V is typically more compatible in phases such as spinel, magnesiowuestite and garnet. Fractionation of all of these phases would cause depletions more marked than those from metal. In this paper consideration of depletions due to metal, oxide and silicate are critically evaluated
FCFS Parallel Service Systems and Matching Models
We consider three parallel service models in which customers of several types
are served by several types of servers subject to a bipartite compatibility
graph, and the service policy is first come first served. Two of the models
have a fixed set of servers. The first is a queueing model in which arriving
customers are assigned to the longest idling compatible server if available, or
else queue up in a single queue, and servers that become available pick the
longest waiting compatible customer, as studied by Adan and Weiss, 2014. The
second is a redundancy service model where arriving customers split into copies
that queue up at all the compatible servers, and are served in each queue on
FCFS basis, and leave the system when the first copy completes service, as
studied by Gardner et al., 2016. The third model is a matching queueing model
with a random stream of arriving servers. Arriving customers queue in a single
queue and arriving servers match with the first compatible customer and leave
immediately with the customer, or they leave without a customer. The last model
is relevant to organ transplants, to housing assignments, to adoptions and many
other situations.
We study the relations between these models, and show that they are closely
related to the FCFS infinite bipartite matching model, in which two infinite
sequences of customers and servers of several types are matched FCFS according
to a bipartite compatibility graph, as studied by Adan et al., 2017. We also
introduce a directed bipartite matching model in which we embed the queueing
systems. This leads to a generalization of Burke's theorem to parallel service
systems
Allan Hills 76005 polymict eucrite pairing group: curatorial and scientific update on a jointly curated meteorite.
第2回極域科学シンポジウム/第34回南極隕石シンポジウム 11月17日(木) 国立国語研究所 2階講
Volatile Element Depletion of the Moon The Roles of Pre-Cursors, Post-Impact Disk Dynamics, and Core Formation
The compositional and isotopic similarity of Earths primitive upper mantle (PUM) and the Moon has bolstered the idea that the Moon was derived from the proto-Earth, but the Moons inventory of volatile lithophile elements Na, K, Rb and Cs are lower than in Earths PUM by a factor of 4 to 5. The abundances of fourteen other volatile elements exhibit siderophile behavior (volatile siderophile elements or VSE; P, As, Cu, Ag, Sb, Ga, Ge, Bi, Pb, Zn, Sn, Cd, In, and Tl) that could be used to evaluate whether the Moon was derived from the proto-Earth, and whether their depletion can be attributed to volatility or core formation. In this study, newly available core-mantle partitioning data are used, together with bulk Moon compositions, protolunar disk dynamics modelling to test the hypothesis that the Moon was derived from PUM-like material. At lunar core formation conditions, As, Sb, Ag, Ge, Bi, Sn are siderophile, whereas P, Cu, Ga, Pb, Zn, Cd, In and Tl are all weakly siderophile or lithophile. Most of the VSE can be explained by a combination of known processes pre-cursor volatile depletion, melt-gas dynamics and equilibria in the protolunar disk, and core formation. Explaining this whole group of volatile elements may require a combination of mixing and separation of the newly formed Moon from remnant gas rich in the highest volatility VSEs. This large group of volatile elements informs a wide temperature range and offers a powerful test of melt-gas segregation mechanisms in the protolunar disk and lunar formation hypotheses
The effect of service time variability on maximum queue lengths in M^X/G/1 queues
We study the impact of service-time distributions on the distribution of the
maximum queue length during a busy period for the M^X/G/1 queue. The maximum
queue length is an important random variable to understand when designing the
buffer size for finite buffer (M/G/1/n) systems. We show the somewhat
surprising result that for three variations of the preemptive LCFS discipline,
the maximum queue length during a busy period is smaller when service times are
more variable (in the convex sense).Comment: 12 page
Siderophile Element Depletion in the Angrite Parent Body (APB) Mantle: Due to Core Formation?
The origin of angrites has evaded scientists due in part to unusual mineralogy, oxidized character, and small numbers of samples. Increased interest in the origin of angrites has stemmed from the recovery of approximately 10 new angrites in the past decade. These new samples have allowed meteoriticists to recognize that angrites are compositionally diverse, old, and record very early differentiation. Also, a magma ocean has been proposed to have been involved in APB early differentiation, but this remains untested for siderophile elements which are commonly cited as one of the main lines of evidence for magma oceans on the early Earth, Moon, Mars and eucrite parent body (e.g., [6]). And recent suggestions that angrites may or may not be from Mercury have also peaked interest in these achondrites. Given all of this background, a detailed understanding of the early differentiation process is desired. Previous efforts at examining siderophile element (SE) concentrations with respect to core formation processes in the APB have not resulted in any definite conclusions regarding segregation of a metallic core. The goal of this study is to summarize what is known about SE concentrations in the suite, estimate depletions of SE compared to chondrites, and apply metal/silicate experimental partition coefficients to assess whether the APB had a core
Effect of Pressure on the Activity Coefficients of Au and Other Siderophile Elements in Liquid Fe-Si Alloys
Light elements can alloy into the iron cores of terrestrial planetary bodies. It is estimated that the Earths core contains ~10% of a light element, most likely a combination of S, C, Si, and O with Si probably being the most abundant. Si dissolved into Fe metal liquids can have a significant influence on the activity coefficients of siderophile elements, and thus the partitioning behavior of those elements between the core and mantle. Many of these elements have been investigated extensively at ambient pressure, and studies up to 1 GPa are becoming more common, but few have been studied at pressures above this. The formation of the Earths core has been estimated to have formed at pressures between 40-60 GPa, so investigating the effect pressure has on Sis influence on siderophile element partitioning is important for modeling core formation in the Earth and smaller planets. Pressure is well known to influence volumetric properties of metallic and silicate liquids, and oxygen fugacity (e.g., [10,11]), but less is known about its effect on activity coefficients (e.g., [12]). Some activity coefficients depend strongly upon the Si content of Fe liquids, and the concentration of siderophile elements such as P, Sb, and As in the terrestrial mantle is easily influenced by dissolved Si in the core. Thus, isolating the effect of pressure on activity coefficients in general is critical in quantitative analysis of core formation models. In this work, we investigate the effect variable Si content has on the partitioning of Au between Fe metal and silicate melt at 10 GPa and 2373 K, with the intention of comparing the behavior to that already investigated at lower pressures. In addition, P, V, Mn, Ga, Zn, Cd, Sn, W, Pb, and Nb were also measured and could thus be included in the assessment of potential pressure effects
Re-Evaluation of HSE DATA in Light of High P-T Partitioning Data: Late Chondritic Addition to Inner Solar System Bodies Not Always Required for HSE
Studies of terrestrial peridotite and martian and achondritic meteorites have led to the conclusion that addition of chondritic material to growing planets or planetesimals, after core formation, occurred on Earth, Moon, Mars, asteroid 4 Vesta, and the parent body of the angritic meteorites. One study even proposed that this was a common process in the final stages of growth. These conclusions are based al-most entirely on the 8 highly siderophile elements (HSE; Re, Au, Pt, Pd, Rh, Ru, Ir, Os), which have been used to argue for late accretion of chondritic material to the Earth after core formation was complete. This idea was originally proposed because the D(metal/silicate) values for the HSE are very high (greater than 10,000), yet their concentration in the terrestrial mantle is too high to be consistent with such high Ds. The HSE in the terrestrial mantle also are present in chondritic relative abundances and hence require similar Ds if this was the result of core-mantle equilibration. The conclusion that late chondritic additions are required for all five of these bodies is based on the chondritic relative abundances of the HSE, as well as their elevated concentrations in the samples. An easy solution is to call upon addition of chondritic material to the mantle of each body, just after core formation; however, in practice this means similar additions of chondritic materials to each body just after core formation which ranges from approximately 4-5 Ma after T(sub 0) for 4 Vesta and the angrites, to 10-25 Ma for Mars, to 35 to 60 Ma for Moon and perhaps the Earth. Since the work of there has been a realization that high PT conditions can lower the partition coefficients of many siderophile elements, indicating that high PT conditions (magma ocean stage) can potentially explain elevated siderophile element abundances. However, detailed high PT partitioning data have been lacking for many of the HSE to evaluate whether such ideas are viable for all four bodies. Re-cent partitioning studies have covered P, T, fO2, and compositional ranges that allow values to be predicted at conditions relevant to these five inner solar system bodies. Because the D(HSE) metal/silicate are lowered substantially at higher PT conditions and natural com-positions (FeNi metallic liquids and peridotites) it is natural to re-examine the role of core formation on the HSE patterns in a variety of inner solar system bodies. Here I will discuss other processes (including high PT core formation for Mars, Moon and Earth) that can produce the observed HSE patterns, and demonstrate that there are viable hypotheses other than the "one size fits all" hypothesis of late chondritic additions
Allan Hills 76005 Polymict Eucrite Pairing Group: Curatorial and Scientific Update on a Jointly Curated Meteorite
Allan Hills 76005 (or 765) was collected by the joint US-Japan field search for meteorites in 1976-77. It was described in detail as "pale gray in color and consists of finely divided macrocrystalline pyroxene-rich matrix that contains abundant clastic fragments: (1) Clasts of white, plagioclase-rich rocks. (2) Medium-gray, partly devitrified, cryptocrystalline. (3) Monomineralic fragments and grains of pyroxene, plagioclases, oxide minerals, sulfides, and metal. In overall appearance it is very similar to some lunar breccias." Subsequent studies found a great diversity of basaltic clast textures and compositions, and therefore it is best classified as a polymict eucrite. Samples from the 1976-77, 77-78, and 78-79 field seasons (76, 77, and 78 prefixes) were split between US and Japan (NIPR). The US specimens are currently at NASA-JSC, Smithsonian Institution, or the Field Museum in Chicago. After this initial finding of ALH 76005, the next year s team recovered one additional mass ALH 77302, and then four additional masses were found during the third season ALH 78040 and ALH 78132, 78158 and 78165. The joint US-Japan collection effort ended after three years and the US began collecting in the Trans-Antarctic Mountains with the 1979-80 and subsequent field seasons. ALH 79017 and ALH 80102 were recovered in these first two years, and then in 1981-82 field season, 6 additional masses were recovered from the Allan Hills. Of course it took some time to establish pairing of all of these specimens, but altogether the samples comprise 4292.4 g of material. Here will be summarized the scientific findings as well as some curatorial details of how specimens have been subdivided and allocated for study. A detailed summary is also presented on the NASA-JSC curation webpage for the HED meteorite compendium
- …
