837 research outputs found

    Life history and ecological genetics of the colonial ascidian Botryllus schlosseri

    Get PDF
    The colonial ascidian Botryllus schlosseri is a cosmopolitan, marine filter feeder, introduced as a laboratory research organism in the 1950s. Currently, it is widely used in many laboratories to investigate a variety of biological questions. Recently, it has become a species of concern, as it is an invasive species in many coastal environments. Here, we review studies on the geographical distribution of the species, sexual and asexual reproduction in the field, tolerance to temperature, salinity and anthropogenic activity, polychromatism, enzymatic polymorphism, and the genetic basis of pigmentation. Studying the relationship between genetic polymorphism and the adaptation of B. schlosseri to environmental stress is a challenge of future research and will improve our understanding of its evolutionary success and invasive potential

    A multi-layer edge-on single photon counting silicon microstrip detector for innovative techniques in diagnostic radiology

    Get PDF
    A three-layer detector prototype, obtained by stacking three edge-on single photon counting silicon microstrip detectors, has been developed and widely tested. This was done in the framework of the Synchrotron Radiation for Medical Physics/Frontier Radiology (SYRMEP/FRONTRAD) collaboration activities, whose aim is to improve the quality of mammographic examinations operating both on the source and on the detector side. The active surface of the device has been fully characterized making use of an edge-scanning technique and of a well-collimated laminar synchrotron radiation beam. The obtained data (interlayer distances, channel correspondence, etc.) have then been used to combine information coming from each detector layer, without causing any loss in spatial and contrast resolution of the device. Contrast and spatial resolution have also been separately evaluated for each detector layer. Moreover, imaging techniques (phase contrast, refraction, and scatter imaging), resulting in an increased visibility of low absorbing details, have been implemented, and their effectiveness has been tested on a biological sample. Finally, the possibility of simultaneously acquiring different kind of images with the different detector layers is discussed. This would result in maximizing the information extracted from the sample, while at the same time the high absorption efficiency of the detector device would allow a low dose delivery

    Use of XR-QA2 radiochromic films for quantitative imaging of a synchrotron radiation beam

    Get PDF
    This work investigates the use of XR-QA2 radiochromic films for quantitative imaging of a synchrotron radiation (SR) beam. Pieces (200 7 30 mm2) of XR-QA2 film were irradiated in a plane transverse to the beam axis, at the SYRMEP beamline at ELETTRA (Trieste), with a monochromatic beam of size 170 7 3.94 mm2 (H 7 V) and energy of 28, 35, 38 or 40 keV. The response was calibrated in terms of average air kerma (1\uf02d20 mGy), measured with a calibrated ionization chamber. Films were digitized in reflectance mode using a flatbed scanner. The 16-bit red channel was used. The net\uf020reflectance was then converted to photon fluence per unit air kerma (mm-2 mGy-1). The SR beam profile was acquired also with a scintillator (GOS) based, fiberoptic coupled CCD camera as well as with a scintillator based flat panel detector. Horizontal profiles obtained with the two modalities were compared, evaluated in a ROI of 17.71 7 0.59 mm2, across the beam centre. Once corrected for flat field, the CCD profile was scaled in order to have the same average value as the normalized profile acquired with the gafchromic film. The same procedure was followed for the beam images acquired with the flat panel detector. Horizontal and vertical line profiles acquired with the radiochromic film show an uneven 2D distribution of the beam intensity, with variations in the order of 15\uf02d20% in the horizontal direction, while the statistical uncertainties evaluated for the radiochromic dose measurements were 6% at 28 keV. Larger variations up to 64% were observed in the vertical direction. The response of the radiochromic film is comparable to that of the other imaging detectors, within less than 5% variation

    Cognitive stimulation of the default-mode network modulates functional connectivity in healthy aging

    Get PDF
    A cognitive-stimulation tool was created to regulate functional connectivity within the brain Default-Mode Network (DMN). Computerized exercises were designed based on the hypothesis that repeated task-dependent coactivation of multiple DMN regions would translate into regulation of resting-state network connectivity. Forty seniors (mean age: 65.90 years; SD: 8.53) were recruited and assigned either to an experimental group (n = 21) who received one month of intensive cognitive stimulation, or to a control group (n = 19) who maintained a regime of daily-life activities explicitly focused on social interactions. An MRI protocol and a battery of neuropsychological tests were administered at baseline and at the end of the study. Changes in the DMN (measured via functional connectivity of posterior-cingulate seeds), in brain volumes, and in cognitive performance were measured with mixed models assessing group-by-timepoint interactions. Moreover, regression models were run to test gray-matter correlates of the various stimulation tasks. Significant associations were found between task performance and gray-matter volume of multiple DMN core regions. Training-dependent up-regulation of functional connectivity was found in the posterior DMN component. This interaction was driven by a pattern of increased connectivity in the training group, while little or no up-regulation was seen in the control group. Minimal changes in brain volumes were found, but there was no change in cognitive performance. The training-dependent regulation of functional connectivity within the posterior DMN component suggests that this stimulation program might exert a beneficial impact in the prevention and treatment of early AD neurodegeneration, in which this neurofunctional pathway is progressively affected by the disease
    corecore