7,095 research outputs found
A note on the growth of Betti numbers and ranks of 3-manifold groups
Let N be an irreducible, compact 3-manifold with empty or toroidal boundary
which is not a closed graph manifold. Using recent work of Agol, Kahn-Markovic
and Przytycki-Wise we will show that pi_1(N) admits a cofinal filtration with
`fast' growth of Betti numbers as well as a cofinal filtration of pi_1(N) with
`slow' growth of ranks.Comment: 10 pages, updated reference
A multimodal approach to understanding motor impairment and disability after stroke
Many different measures have been found to be related to behavioral outcome after stroke. Preclinical studies emphasize the importance of brain injury and neural function. However, the measures most important to human outcomes remain uncertain, in part because studies often examine one measure at a time or enroll only mildly impaired patients. The current study addressed this by performing multimodal evaluation in a heterogeneous population. Patients (n = 36) with stable arm paresis 3-6 months post-stroke were assessed across 6 categories of measures related to stroke outcome: demographics/medical history, cognitive/mood status, genetics, neurophysiology, brain injury, and cortical function. Multivariate modeling identified measures independently related to an impairment-based outcome (arm Fugl-Meyer motor score). Analyses were repeated (1) identifying measures related to disability (modified Rankin Scale score), describing independence in daily functions and (2) using only patients with mild deficits. Across patients, greater impairment was related to measures of injury (reduced corticospinal tract integrity) and neurophysiology (absence of motor evoked potential). In contrast, (1) greater disability was related to greater injury and poorer cognitive status (MMSE score) and (2) among patients with mild deficits, greater impairment was related to cortical function (greater contralesional motor/premotor cortex activation). Impairment after stroke is most related to injury and neurophysiology, consistent with preclinical studies. These relationships vary according to the patient subgroup or the behavioral endpoint studied. One potential implication of these results is that choice of biomarker or stratifying variable in a clinical stroke study might vary according to patient characteristics. © 2014 Springer-Verlag Berlin Heidelberg
Hierarchical spin-orbital polarisation of a giant Rashba system
The Rashba effect is one of the most striking manifestations of spin-orbit
coupling in solids, and provides a cornerstone for the burgeoning field of
semiconductor spintronics. It is typically assumed to manifest as a
momentum-dependent splitting of a single initially spin-degenerate band into
two branches with opposite spin polarisation. Here, combining
polarisation-dependent and resonant angle-resolved photoemission measurements
with density-functional theory calculations, we show that the two "spin-split"
branches of the model giant Rashba system BiTeI additionally develop disparate
orbital textures, each of which is coupled to a distinct spin configuration.
This necessitates a re-interpretation of spin splitting in Rashba-like systems,
and opens new possibilities for controlling spin polarisation through the
orbital sector.Comment: 11 pages including supplemental figures, accepted for publication at
Science Advance
Pressure balance at the magnetopause: Experimental studies
The pressure balance at the magnetopause is formed by magnetic field and
plasma in the magnetosheath, on one side, and inside the magnetosphere, on the
other side. In the approach of dipole earth's magnetic field configuration and
gas-dynamics solar wind flowing around the magnetosphere, the pressure balance
predicts that the magnetopause distance R depends on solar wind dynamic
pressure Pd as a power low R ~ Pd^alpha, where the exponent alpha=-1/6. In the
real magnetosphere the magnetic filed is contributed by additional sources:
Chapman-Ferraro current system, field-aligned currents, tail current, and
storm-time ring current. Net contribution of those sources depends on
particular magnetospheric region and varies with solar wind conditions and
geomagnetic activity. As a result, the parameters of pressure balance,
including power index alpha, depend on both the local position at the
magnetopause and geomagnetic activity. In addition, the pressure balance can be
affected by a non-linear transfer of the solar wind energy to the
magnetosheath, especially for quasi-radial regime of the subsolar bow shock
formation proper for the interplanetary magnetic field vector aligned with the
solar wind plasma flow.Comment: 8 pages, 2 figure
Recommended from our members
The Anatomy of Stroke Injury Predicts Extent of Gains from Therapy.
Clustering of galaxies around radio quasars at 0.5 < z < 0.8
We have observed the galaxy environments around a sample of 21 radio-loud,
steep-spectrum quasars at 0.5<z<0.82, spanning several orders of magnitude in
radio luminosity. The observations also include background control fields used
to obtain the excess number of galaxies in each quasar field. The galaxy excess
was quantified using the spatial galaxy-quasar correlation amplitude, B_gq, and
an Abell-type measurement, N_0.5 (Hill & Lilly 1991). A few quasars are found
in relatively rich clusters, but on average, they seem to prefer galaxy groups
or clusters of approximately Abell class 0. We have combined our sample with
literature samples extending down to z=0.2 and covering the same range in radio
luminosity. By using Spearman statistic to disentangle redshift and luminosity
dependences, we detect a weak, but significant, positive correlation between
the richness of the quasar environment and the quasar's radio luminosity.
However, we do not find any epoch dependence in B_gq, as has previously been
reported for radio quasars and galaxies. We discuss the radio
luminosity-cluster richness link and possible explanations for the weak
correlation that is seen.Comment: 18 pages, 9 figures, submitted to MNRA
The Lore of Low Methane Livestock:Co-Producing Technology and Animals for Reduced Climate Change Impact
Methane emissions from sheep and cattle production have gained increasing profile in the context of climate change. Policy and scientific research communities have suggested a number of technological approaches to mitigate these emissions. This paper uses the concept of co-production as an analytical framework to understand farmers’ evaluation of a 'good animal’. It examines how technology and sheep and beef cattle are co-produced in the context of concerns about the climate change impact of methane. Drawing on 42 semi-structured interviews, this paper demonstrates that methane emissions are viewed as a natural and integral part of sheep and beef cattle by farmers, rather than as a pollutant. Sheep and beef cattle farmers in the UK are found to be an extremely heterogeneous group that need to be understood in their specific social, environmental and consumer contexts. Some are more amenable to appropriating methane reducing measures than others, but largely because animals are already co-constructed from the natural and the technical for reasons of increased production efficiency
Cytomolecular identification of individual wheat-wheat chromosome arm associations in wheat-rye hybrids
Chromosome pairing in the meiotic metaphase I of wheatrye
hybrids has been characterized by sequential genomic
and fluorescent in situ hybridization allowing not only the
discrimination of wheat and rye chromosomes, but also the
identification of the individual wheat and rye chromosome
arms involved in the chromosome associations. The majority
of associations (93.8%) were observed between the wheat
chromosomes. The largest number of wheat-wheat chromosome
associations (53%) was detected between the A and D
genomes, while the frequency of B-D and A-B associations
was significantly lower (32 and 8%, respectively). Among the
A-D chromosome associations, pairing between the 3AL and
3DL arms was observed with the highest frequency, while
the most frequent of all the chromosome associations (0.113/
cell) was found to be the 3DS-3BS. Differences in the pairing
frequency of the individual chromosome arms of wheat-rye
hybrids have been discussed in relation to the homoeologous
relationships between the constituent genomes of
hexaploid wheat
Variability in efficiency of particulate organic carbon export: A model study
The flux of organic carbon from the surface ocean to mesopelagic depths is a key component of the global carbon cycle and is ultimately derived from primary production (PP) by phytoplankton. Only a small fraction of organic carbon produced by PP is exported from the upper ocean, referred to as the export efficiency (herein e-ratio). Limited observations of the e-ratio are available and there is thus considerable interest in using remotely-sensed parameters such as sea surface temperature to extrapolate local estimates to global annual export flux. Currently, there are large discrepancies between export estimates derived in this way; one possible explanation is spatial or temporal sampling bias in the observations. Here we examine global patterns in the spatial and seasonal variability in e-ratio and the subsequent effect on export estimates using a high resolution global biogeochemical model. NEMO-MEDUSA represents export as separate slow and fast sinking detrital material whose remineralisation is respectively temperature dependent and a function of ballasting minerals. We find that both temperature and the fraction of export carried by slow sinking particles are factors in determining e-ratio, suggesting that current empirical algorithms for e-ratio that only consider temperature are overly simple. We quantify the temporal lag between PP and export, which is greatest in regions of strong variability in PP where seasonal decoupling can result in large e-ratio variability. Extrapolating global export estimates from instantaneous measurements of e-ratio is strongly affected by seasonal variability, and can result in errors in estimated export of up to ±60%
- …
