19 research outputs found

    Keeping the Sea Out: Early Medieval Structures at ca' Foscari University, Venice, Italy

    No full text
    In 2004, the courtyard of Ca’ Foscari University, Venice, was excavated in advance of building work, revealing an unbroken sequence of archaeological deposits. The earliest layers consisted of redeposited natural sediment, packed into wattle structures, a system of land reclamation first described by Cassiodorus in AD 537–8, and now known from several other sites in the city. The ground level was built up and extended several times with successive wattle structures, before the eventual construction of a stone waterfront. We have used Bayesian modeling of dendrochronological, radiocarbon, and stratigraphic dating evidence to obtain a precise chronology for the earliest phases of occupation, and to compare it to the chronology of land reclamation at similar sites elsewhere in Venice.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    Evidence of NAO control on subsurface ice accumulation in a 1200 yr old cave-ice sequence, St. Livres ice cave, Switzerland

    Get PDF
    Mid-latitude ice caves are assumed to be highly sensitive to climatic changes and thus represent a potentially interesting environmental archive. Establishing a precise chronology is, however, a prerequisite for the understanding of processes driving the cave-ice mass balance and thus allows a paleoenvironmental interpretation. At St. Livres ice cave (Jura Mountains, Switzerland), subfossil trees and organic material are abundant in the cave-ice deposit, therefore allowing the dating of individual ice layers. The dendrochronological analysis of 45 subfossil samples of Norway spruce (Picea abies (L.) Karst.) from the overhanging front of the ice outcrop as well as the dating of seven wood samples with 14C dating allowed for a reconstruction of the St. Livres cave-ice sequence and for the determination of periods of ice accumulation and ablation. Results suggest a maximal age of 1200 ± 50 14C yr BP for the observed ice sequence and indicate the presence of four major deposition gaps dated to the 14th, 15th, mid-19th and late 19th century, which can be related with periods of positive North Atlantic Oscillation anomalies (NAO+) over the winter half-year and/or anthropogenic cave-ice abstraction. Similarly, there is evidence that periods of cave-ice accumulation as observed between AD 1877–1900 and AD 1393–1415 would correspond with phases of negative NAO indices. Cave ice represents therefore an original climate archive for the winter half-year and is complementary to other continental proxies recording preferentially summer conditions (e.g., tree rings, varves)
    corecore