20,322 research outputs found
Symbol correspondences for spin systems
The present monograph explores the correspondence between quantum and
classical mechanics in the particular context of spin systems, that is,
SU(2)-symmetric mechanical systems. Here, a detailed presentation of quantum
spin-j systems, with emphasis on the SO(3)-invariant decomposition of their
operator algebras, is followed by an introduction to the Poisson algebra of the
classical spin system and a similarly detailed presentation of its
SO(3)-invariant decomposition. Subsequently, this monograph proceeds with a
detailed and systematic study of general quantum-classical symbol
correspondences for spin-j systems and their induced twisted products of
functions on the 2-sphere. This original systematic presentation culminates
with the study of twisted products in the asymptotic limit of high spin
numbers. In the context of spin systems, it shows how classical mechanics may
or may not emerge as an asymptotic limit of quantum mechanics.Comment: Research Monograph, 171 pages (book format, preliminary version
Moving frames for cotangent bundles
Cartan's moving frames method is a standard tool in riemannian geometry. We
set up the machinery for applying moving frames to cotangent bundles and its
sub-bundles defined by non-holonomic constraints.Comment: 13 pages, to appear in Rep. Math. Phy
Correlations within the Non-Equilibrium Green's Function Method
Non-equilibrium Green's Function (NGF) method is a powerful tool for studying
the evolution of quantum many-body systems. Different types of correlations can
be systematically incorporated within the formalism. The time evolution of the
single-particle Green's functions is described in terms of the Kadanoff-Baym
equations. The current work initially focuses on introducing the correlations
within infinite nuclear matter in one dimension and then in a finite system in
the NGF approach. Starting from the harmonic oscillator Hamiltonian, by
switching on adiabatically the mean-field and correlations simultaneously, a
correlated state with ground-state characteristics is arrived at within the NGF
method. Furthermore the use of cooling to for improving the adiabatic switching
is explored.Comment: Contribution to Proc. 5th Conference on Nuclei and Mesoscopic
Physics, E Lansing, 6-10 March 2017; 9 pages, 8 figure
Singularities of affine equidistants: projections and contacts
Using standard methods for studying singularities of projections and of
contacts, we classify the stable singularities of affine -equidistants
of -dimensional closed submanifolds of , for ,
whenever is a pair of nice dimensions.Comment: 18 pages, v2 (minimal changes) agrees with version to appear in
Journal of Singularitie
Cause of the charge radius isotope shift at the \emph{N}=126 shell gap
We discuss the mechanism causing the `kink' in the charge radius isotope
shift at the N=126 shell closure. The occupation of the 1 neutron
orbital is the decisive factor for reproducing the experimentally observed
kink. We investigate whether this orbital is occupied or not by different
Skyrme effective interactions as neutrons are added above the shell closure.
Our results demonstrate that several factors can cause an appreciable
occupation of the 1 neutron orbital, including the magnitude of the
spin-orbit field, and the isoscalar effective mass of the Skyrme interaction.
The symmetry energy of the effective interaction has little influence upon its
ability to reproduce the kink.Comment: 4 pages, 4 figures, to be submitted to proceedings of INPC 201
Systematic Development of Trans-Theoretically Based Behavioral Risk Management Programs
The authors explain the development and use of a behavioral Risk management strategy. It is designed for developing interventions to change behaviors, e.g., to lower the Risk of AIDS. The advantage of their strategy is said to be its structure combined with flexibility. Intervenors are not restricted to a single model in determining factors most relevant to changing Risky behavior
- …
