600 research outputs found

    Remotely forced nearshore upwelling in southern California

    Get PDF
    [1] Alongshore winds in Baja California strongly influence nearshore temperatures hundreds of kilometers to the north at Point Loma, San Diego, California, on timescales of a week to a year. The time lag between wind and temperature is consistent with first mode coastal trapped wave phase speed. The nearshore cross-shelf circulation forced by the coastal trapped waves is, at least much of the year, oppositely directed at the surface and bottom. No relation is found between the winds and temperature for periods greater than a year. It is argued that similar results may be found elsewhere in the Southern California Bight. The relationship between stratification and bottom temperature varies over the 1.3 years of data, but for much of the time, warmer bottom waters are associated with even warmer surface waters and thus stronger stratification. The effects of the remotely forced cross-shelf exchange on coastal pollution, nutrient dynamics, and larval transport are briefly discussed

    On the trophic fate of Phaeocystis pouchetii: VII. Sterols and fatty acids reveal sedimentation of Phaocystis-derived organic matter via krill fecal strings

    Get PDF
    As part of a joint project on the fate of phytoplankton in Balsfjorden in Northern Norway, we investigated the trophic fate and sedimentation potential of Phaeocystis pouchetii by tracing the transition of biomarker patterns from a phytoplankton bloom to sediment traps and during a gut passage experiment. The phytoplankton biomass during the spring bloom 1996 was dominated by colonial P. pouchetii (ca. 85 %) and four members of the diatom family Thalassiosiraceae (ca. 10%). Particulate organic carbon in sediment traps largely consisted of fecal material from the Arctic krill Thysanoessa sp.. Sterol and fatty acid biomarker patterns in the phytoplankton bloom could be reproduced by combining the individual biomarker patterns of the isolated phytoplankters P. pouchetii and Thalassiosira decipiens in a ratio of ca. 75:25. In a laboratory experiment, Arctic krill (Thysanoessa raschii) fed with similar efficiency on Phaeocystis colonies and the Thalassiosiraceae. During gut passage, the abundance of Thalassiosiraceae biomarkers in fecal strings increased relative to Phaeocystis biomarkers, while biomarkers from krill became dominant. This transition of biomarker patterns due to gut passage in T. raschii closely resembled the biomarker transition from the surface bloom to material in sediment traps at 40-170 m depth, which was mainly composed of krill fecal strings. We conclude that krill grazed efficiently on Phaeocystis colonies in Balsfjorden, and caused sedimentation of Phaeocystis-derived organic matter below the euphotic zone via fecal strings. Hence, both transfer to higher trophic levels and sedimentation of Phaeocystis-derived organic matter can be more effective than commonly believed

    Fine asymptotic behavior in eigenvalues of random normal matrices: Ellipse Case

    Full text link
    We consider the random normal matrices with quadratic external potentials where the associated orthogonal polynomials are Hermite polynomials and the limiting support (called droplet) of the eigenvalues is an ellipse. We calculate the density of the eigenvalues near the boundary of the droplet up to the second subleading corrections and express the subleading corrections in terms of the curvature of the droplet boundary. From this result we additionally get the expected number of eigenvalues outside the droplet. We also obtain the asymptotics of the kernel and found that, in the bulk, the correction term is exponentially small. This leads to the vanishing of certain Cauchy transform of the orthogonal polynomial in the bulk of the droplet up to an exponentially small error.Comment: 39 pages, 5 figures. Extended version: Theorem 1.2, Theorem 1.4, Section 6 and Section 7.3 are ne

    Observing biogeochemical cycles at global scales with profiling floats and gliders: prospects for a global array

    Get PDF
    Chemical and biological sensor technologies have advanced rapidly in the past five years. Sensors that require low power and operate for multiple years are now available for oxygen, nitrate, and a variety of bio-optical properties that serve as proxies for important components of the carbon cycle (e.g., particulate organic carbon). These sensors have all been deployed successfully for long periods, in some cases more than three years, on platforms such as profiling floats or gliders. Technologies for pH, pCO2, and particulate inorganic carbon are maturing rapidly as well. These sensors could serve as the enabling technology for a global biogeochemical observing system that might operate on a scale comparable to the current Argo array. Here, we review the scientific motivation and the prospects for a global observing system for ocean biogeochemistry

    Links between topography, wind, deflation, lakes and dust: The case of the Bodélé Depression, Chad

    Get PDF
    The Bodélé Depression, Chad is the planet's largest single source of dust. Deflation from the Bodélé could be seen as a simple coincidence of two key prerequisites: strong surface winds and a large source of suitable sediment. But here we hypothesise that long term links between topography, winds, deflation and dust ensure the maintenance of the dust source such that these two apparently coincidental key ingredients are connected by land-atmosphere processes with topography acting as the overall controlling agent. We use a variety of observational and numerical techniques, including a regional climate model, to show that: 1) contemporary deflation from the Bodélé is delineated by topography and a surface wind stress maximum; 2) the Tibesti and Ennedi mountains play a key role in the generation of the erosive winds in the form of the Bodélé Low Level Jet (LLJ); 3) enhanced deflation from a stronger Bodélé LLJ during drier phases, for example, the Last Glacial Maximum, was probably sufficient to create the shallow lake in which diatoms lived during wetter phases, such as the Holocene pluvial. Winds may therefore have helped to create the depression in which erodible diatom material accumulated. Instead of a simple coincidence of nature, dust from the world's largest source may result from the operation of long term processes on paleo timescales which have led to ideal conditions for dust generation in the world's largest dust source. Similar processes plausibly operate in other dust hotspots in topographic depressions

    Salinity and temperature balances at the SPURS central mooring during fall and winter

    Get PDF
    Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 1 (2015): 56-65, doi:10.5670/oceanog.2015.06.One part of the Salinity Processes in the Upper-ocean Regional Study (SPURS) field campaign focused on understanding the physical processes affecting the evolution of upper-ocean salinity in the region of climatological maximum sea surface salinity in the subtropical North Atlantic (SPURS-1). An upper-ocean salinity budget provides a useful framework for increasing this understanding. The SPURS-1 program included a central heavily instrumented mooring for making accurate measurements of air-sea surface fluxes, as well as other moorings, Argo floats, and gliders that together formed a dense observational array. Data from this array are used to estimate terms in the upper-ocean salinity and heat budgets during the SPURS-1 campaign, with a focus on the first several months (October 2012 to February 2013) when the surface mixed layer was becoming deeper, fresher, and cooler. Specifically, we examine the salinity and temperature balances for an upper-ocean mixed layer, defined as the layer where the density is within 0.4 kg m–3 of its surface value. The gross features of the evolution of upper-ocean salinity and temperature during this fall/winter season are explained by a combination of evaporation and precipitation at the sea surface, horizontal transport of heat and salt by mixed-layer currents, and vertical entrainment of fresher, cooler fluid into the layer as it deepened. While all of these processes were important in the observed seasonal (fall) freshening at this location in the salinity-maximum region, the variability of salinity on monthly-to-intraseasonal time scales resulted primarily from horizontal advection.J.T. Farrar, A.J. Plueddemann, J.B. Edson, and the deployment of the central mooring were supported by NASA grant NNX11AE84G. L. Rainville, C. Lee, C. Eriksen, and the Seaglider program were supported by NASA grant NNX11AE78G. R. Schmitt was supported by NSF grant OCE-1129646. B. Hodges and D. Fratantoni were supported by NASA grant NNX11AE82G. The Prawler moorings were funded by PMEL. The data analysis was also supported by NASA grant NNX14AH38G

    Bottom mixed layer oxygen dynamics in the Celtic Sea

    Get PDF
    The seasonally stratified continental shelf seas are highly productive, economically important environments which are under considerable pressure from human activity. Global dissolved oxygen concentrations have shown rapid reductions in response to anthropogenic forcing since at least the middle of the twentieth century. Oxygen consumption is at the same time linked to the cycling of atmospheric carbon, with oxygen being a proxy for carbon remineralisation and the release of CO2. In the seasonally stratified seas the bottom mixed layer (BML) is partially isolated from the atmosphere and is thus controlled by interplay between oxygen consumption processes, vertical and horizontal advection. Oxygen consumption rates can be both spatially and temporally dynamic, but these dynamics are often missed with incubation based techniques. Here we adopt a Bayesian approach to determining total BML oxygen consumption rates from a high resolution oxygen time-series. This incorporates both our knowledge and our uncertainty of the various processes which control the oxygen inventory. Total BML rates integrate both processes in the water column and at the sediment interface. These observations span the stratified period of the Celtic Sea and across both sandy and muddy sediment types. We show how horizontal advection, tidal forcing and vertical mixing together control the bottom mixed layer oxygen concentrations at various times over the stratified period. Our muddy-sand site shows cyclic spring-neap mediated changes in oxygen consumption driven by the frequent resuspension or ventilation of the seabed. We see evidence for prolonged periods of increased vertical mixing which provide the ventilation necessary to support the high rates of consumption observed

    Photoproduction of K+K− meson pairs on the proton

    Get PDF
    The exclusive reaction γp→pK+K− was studied in the photon energy range 3.0–3.8  GeV and momentum transfer range 0.6<−t<1.3  GeV2. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. In this kinematic range the integrated luminosity was approximately 20  pb−1. The reaction was isolated by detecting the K+ and the proton in CLAS, and reconstructing the K− via the missing-mass technique. Moments of the dikaon decay angular distributions were extracted from the experimental data. Besides the dominant contribution of the ϕ meson in the P wave, evidence for S−P interference was found. The differential production cross sections dσ/dt for individual waves in the mass range of the ϕ resonance were extracted and compared to predictions of a Regge-inspired model. This is the first time the t-dependent cross section of the S-wave contribution to the elastic K+K− photoproduction has been measured
    corecore