548 research outputs found

    High Frequency Radar Wind Turbine Interference Community Working Group Report

    Get PDF
    Land-based High Frequency (HF) Radars provide critically important observations of the coastal ocean that will be adversely affected by the spinning blades of utility-scale wind turbines. Pathways to mitigate the interference of turbines on HF radar observations exist for small number of turbines; however, a greatly increased pace of research is required to understand how to minimize the complex interference patterns that will be caused by the large arrays of turbines planned for the U.S. outer continental shelf. To support the U.S.’s operational and scientific needs, HF radars must be able to collect high-quality measurements of the ocean’s surface inand around areas with significant numbers of wind turbines. This is a solvable problem, but given the rapid pace of wind energy development, immediate action is needed to ensure that HF radar wind turbine interference mitigation efforts keep pace with the planned build out of turbines

    Refuge in a Place Without Refugees

    Get PDF
    The question of who should be given legal status as a refugee has consistently been veiled in discussions of ‘practicality,’ political motives, and inaction. Centered in these discussions tend to be state officials, international organization officials, and academics. More importantly, typically excluded from this assembly of decision makers and the thinkers are those actually and personally affected by the specifics of the term. In Jordan, this discussion is particularly interesting because the government does not legally recognize refugees since the United Nations refused to recognize Palestinians under the 1951 Convention definition. This paper aims to unpack the term refugee: both theoretically and what it actually means to be a refugee in Jordan

    Appreciative inquiry in medical education*

    Get PDF
    The practice of medicine, and also medical education, typically adopts a problem-solving approach to identify "what is going wrong" with a situation. However, an alternative is Appreciative Inquiry (AI), which adopts a positive and strengths-based approach to identify "what is going well" with a situation. The AI approach can be used for the development and enhancement of the potential of both individuals and organizations. An essential aspect of the AI approach is the generative process, in which a new situation is envisioned and both individual and collective strengths are mobilized to make changes to achieve the valued future situation. The AI approach has been widely used in the world of business and general education, but is has an exciting potential for medical education, including curriculum development, faculty development, supporting learners through academic advising and mentoring, but also for enhancing the teaching and learning of both individuals and groups. This AMEE Guide describes the core principles of AI and their practical application in medical education

    Ror2-mediated alternative Wnt signaling regulates cell fate and adhesion during mammary tumor progression

    Get PDF
    Cellular heterogeneity is a common feature in breast cancer, yet an understanding of the coexistence and regulation of various tumor cell subpopulations remains a significant challenge in cancer biology. In the current study, we approached tumor cell heterogeneity from the perspective of Wnt pathway biology to address how different modes of Wnt signaling shape the behaviors of diverse cell populations within a heterogeneous tumor landscape. Using a syngeneic TP53-null mouse model of breast cancer, we identified distinctions in the topology of canonical Wnt β-catenin-dependent signaling activity and non-canonical β-catenin-independent Ror2-mediated Wnt signaling across subtypes and within tumor cell subpopulations in vivo. We further discovered an antagonistic role for Ror2 in regulating canonical Wnt/β-catenin activity in vivo, where lentiviral shRNA depletion of Ror2 expression augmented canonical Wnt/β-catenin signaling activity across multiple basal-like models. Depletion of Ror2 expression yielded distinct phenotypic outcomes and divergent alterations in gene expression programs among different tumors, despite all sharing basal-like features. Notably, we uncovered cell state plasticity and adhesion dynamics regulated by Ror2, which influenced Ras Homology Family Member A (RhoA) and Rho-Associated Coiled-Coil Kinase 1 (ROCK1) activity downstream of Dishevelled-2 (Dvl2). Collectively, these studies illustrate the integration and collaboration of Wnt pathways in basal-like breast cancer, where Ror2 provides a spatiotemporal function to regulate the balance of Wnt signaling and cellular heterogeneity during tumor progression

    Exquisite Corpse : stories and an exegesis

    Full text link
    University of Technology, Sydney. Faculty of Arts and Social Sciences.NO FULL TEXT AVAILABLE. Access is restricted indefinitely

    Using Flip in an English Presentation Class With Japanese University Students

    Get PDF

    Modeling for the performance of navigation, control and data post-processing of underwater gliders

    Get PDF
    Underwater gliders allow efficient monitoring in oceanography. In contrast to buoys, which log oceanographic data at individual depths at only one location, gliders can log data over a period of up to one year by following predetermined routes. In addition to the logged data from the available sensors, usually a conductivity-temperature-depth (CTD) sensor, the depth-average velocity can also be estimated using the horizontal glider velocity and the GPS update in a dead-reckoning algorithm. The horizontal velocity is also used for navigation or planning a long-term glider mission. This paper presents an investigation to determine the horizontal glider velocity as accurately as possible. For this, Slocum glider flight models used in practice will be presented and compared. A glider model for a steady-state gliding motion based on this analysis is described in detail. The approach for estimating the individual model parameters using nonlinear regression will be presented. In this context, a robust method to accurately detect the angle of attack is presented and the requirements of the logged vehicle data for statistically verified model parameters are discussed. The approaches are verified using logged data from glider missions in the Indian Ocean from 2016 to 2018. It is shown that a good match between the logged and the modeled data requires a time-varying model, where the model parameters change with respect to time. A reason for the changes is biofouling, where organisms settle and grow on the glider. The proposed method for deciphering an accurate horizontal glider velocity could serve to improve the dead-reckoning algorithm used by the glider for calculating depth-average velocity and for understanding its errors. The depth-average velocity is used to compare ocean current models from CMEMS and HYCOM with the glider logged data
    corecore