15 research outputs found

    New insights into North European and North Atlantic surface pressure variability, storminess, and related climatic change since 1830

    Get PDF
    The authors present initial results of a new pan-European and international storminess since 1800 as interpreted from European and North Atlantic barometric pressure variability (SENABAR) project. This first stage analyzes results of a new daily pressure variability index, dp(abs)24, from long-running meteorological stations in Denmark, the Faroe Islands, Greenland, Iceland, the United Kingdom, and Ireland, some with data from as far back as the 1830s. It is shown that dp(abs)24 is significantly related to wind speed and is therefore a good measure of Atlantic and Northwest European storminess and climatic variations. The authors investigate the temporal and spatial consistency of dp(abs)24, the connection between annual and seasonal dp(abs)24 and the North Atlantic Oscillation Index (NAOI), as well as dp(abs)24 links with historical storm records. The results show periods of relatively high dp(abs)24 and enhanced storminess around 1900 and the early to mid-1990s, and a relatively quiescent period from about 1930 to the early 1960s, in keeping with earlier studies. There is little evidence that the mid- to late nineteenth century was less stormy than the present, and there is no sign of a sustained enhanced storminess signal associated with "global warming." The results mark the first step of a project intending to improve on earlier work by linking barometric pressure data from a wide network of stations with new gridded pressure and reanalysis datasets, GCMs, and the NAOI. This work aims to provide much improved spatial and temporal coverage of changes in European, Atlantic, and global storminess. © 2008 American Meteorological Society

    New insights into North European and North Atlantic surface pressure variability, storminess and related climate change since 1830

    Get PDF
    The authors present initial results of a new pan-European and international storminess since 1800 as interpreted from European and North Atlantic barometric pressure variability (SENABAR) project. This first stage analyzes results of a new daily pressure variability index, dp(abs)24, from long-running meteorological stations in Denmark, the Faroe Islands, Greenland, Iceland, the United Kingdom, and Ireland, some with data from as far back as the 1830s. It is shown that dp(abs)24 is significantly related to wind speed and is therefore a good measure of Atlantic and Northwest European storminess and climatic variations. The authors investigate the temporal and spatial consistency of dp(abs)24, the connection between annual and seasonal dp(abs)24 and the North Atlantic Oscillation Index (NAOI), as well as dp(abs)24 links with historical storm records. The results show periods of relatively high dp(abs)24 and enhanced storminess around 1900 and the early to mid-1990s, and a relatively quiescent period from about 1930 to the early 1960s, in keeping with earlier studies. There is little evidence that the mid- to late nineteenth century was less stormy than the present, and there is no sign of a sustained enhanced storminess signal associated with “global warming.” The results mark the first step of a project intending to improve on earlier work by linking barometric pressure data from a wide network of stations with new gridded pressure and reanalysis datasets, GCMs, and the NAOI. This work aims to provide much improved spatial and temporal coverage of changes in European, Atlantic, and global storminess

    Degenerate T-cell Recognition of Peptides on MHC Molecules Creates Large Holes in the T-cell Repertoire

    Get PDF
    The cellular immune system screens peptides presented by host cells on MHC molecules to assess if the cells are infected. In this study we examined whether the presented peptides contain enough information for a proper self/nonself assessment by comparing the presented human (self) and bacterial or viral (nonself) peptides on a large number of MHC molecules. For all MHC molecules tested, only a small fraction of the presented nonself peptides from 174 species of bacteria and 1000 viral proteomes (0.2%) is shown to be identical to a presented self peptide. Next, we use available data on T-cell receptor-peptide-MHC interactions to estimate how well T-cells distinguish between similar peptides. The recognition of a peptide-MHC by the T-cell receptor is flexible, and as a result, about one-third of the presented nonself peptides is expected to be indistinguishable (by T-cells) from presented self peptides. This suggests that T-cells are expected to remain tolerant for a large fraction of the presented nonself peptides, which provides an explanation for the “holes in the T-cell repertoire” that are found for a large fraction of foreign epitopes. Additionally, this overlap with self increases the need for efficient self tolerance, as many self-similar nonself peptides could initiate an autoimmune response. Degenerate recognition of peptide-MHC-I complexes by T-cells thus creates large and potentially dangerous overlaps between self and nonself

    Colombia's forgotten frontier: a literary geography of the Putumayo

    Full text link

    Rank‐reduction‐based trace interpolation

    Full text link
    corecore