26 research outputs found

    Higher‐mode textile patch antenna with embroidered vias for on‐body communication

    Get PDF
    This paper is a preprint of a paper accepted by IET Microwaves, Antennas and Propagation, and is subject to Institution of Engineering and Technology Copyright. When the final version is published, the copy of record will be available at IET Digital Library.This study presents a wearable textile higher-mode microstrip patch antenna (HMMPA) that has been designed to radiate omni-directionally at 2.4 GHz Industrial Scientific and Medical (ISM) band. Emphasis is given to the fabrication process of the textile vias with conductive sewing thread that plays an important role in generating the optimal mode for on-body radiation. The embroidery technique enabled a side-fed low-profile antenna which could be placed directly against the body. The proposed textile HMMPA antenna performance is compared with a probe-fed HMMPA antenna fabricated with rigid copper radiating parts, for both free space and on-body conditions. The on-body antenna performance has been tested by performing near-field measurements of the antenna on a full-body specific anthropomorphic mannequin phantom in an anechoic chamber. Results show that the proposed textile HMMPA antenna with vias made from conductive thread can radiate on-body with good efficiency while minimising the radiation in the broadside direction

    <i>TESS</i> Spots a Compact System of Super-Earths around the Naked-eye Star HR 858

    Get PDF
    Transiting Exoplanet Survey Satellite (TESS) observations have revealed a compact multiplanet system around the sixth-magnitude star HR 858 (TIC 178155732, TOI 396), located 32 pc away. Three planets, each about twice the size of Earth, transit this slightly evolved, late F-type star, which is also a member of a visual binary. Two of the planets may be in mean motion resonance. We analyze the TESS observations, using novel methods to model and remove instrumental systematic errors, and combine these data with follow-up observations taken from a suite of ground-based telescopes to characterize the planetary system. The HR 858 planets are enticing targets for precise radial velocity observations, secondary eclipse spectroscopy, and measurements of the Rossiter–McLaughlin effect

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Mass determination of two Jupiter-sized planets orbiting slightly evolved stars: TOI-2420 b and TOI-2485 b

    Full text link
    Hot and warm Jupiters might have undergone the same formation and evolution path, but the two populations exhibit different distributions of orbital parameters, challenging our understanding on their actual origin. The present work, which is the results of our warm Jupiters survey carried out with the CHIRON spectrograph within the KESPRINT collaboration, aims to address this challenge by studying two planets that could help bridge the gap between the two populations. We report the confirmation and mass determination of a hot Jupiter (orbital period shorter than 10 days), TOI-2420\,b, and a warm Jupiter, TOI-2485\,b. We performed a joint analysis using a wide variety of spectral and photometric data in order to characterize these planetary systems. We found that TOI-2420\,b has an orbital period of Pb_{\rm b}=5.8 days, a mass of Mb_{\rm b}=0.9 MJ_{\rm J} and a radius of Rb_{\rm b}=1.3 RJ_{\rm J}, with a planetary density of 0.477 \gc; while TOI-2485\,b has an orbital period of Pb_{\rm b}=11.2 days, a mass of Mb_{\rm b}=2.4 MJ_{\rm J} and a radius of Rb_{\rm b}=1.1 RJ_{\rm J} with density 2.36 \gc. With current parameters, the migration history for TOI-2420\,b and TOI-2485\,b is unclear: the high-eccentricity migration scenarios cannot be ruled out, and TOI-2485\,b\u27s characteristics may rather support this scenario

    Давчыно чаровнічэнько

    Get PDF
    Давчыно чаровнічэньк

    Mass determination of two Jupiter-sized planets orbiting slightly evolved stars: TOI-2420 b and TOI-2485 b

    Get PDF
    Context. Hot and warm Jupiters might have undergone the same formation and evolution path, but the two populations exhibit different distributions of orbital parameters. This challenges our understanding of their actual origin.Aims. We report the results of our warm Jupiters survey, which was carried out with the CHIRON spectrograph within the KESPRINT collaboration. We addressed the question of the population origin by studying two planets that might help to bridge the gap between the two populations.Methods. We confirm two planets and determine their mass. One is a hot Jupiter (with an orbital period shorter than 10 days), TOI-2420 b, and the other is a warm Jupiter, TOI-2485 b. We analyzed them using a wide variety of spectral and photometric data in order to characterize these planetary systems.Results. We found that TOI-2420 b has an orbital period of Pb=5.8 days, a mass of Mb=0.9 MJ, and a radius of Rb=1.3 RJ, with a planetary density of 0.477 g cm−3. TOI-2485 b has an orbital period of Pb=11.2 days, a mass of Mb=2.4 MJ, and a radius of Rb=1.1 RJ with a density of 2.36 g cm−3.Conclusions. With the current parameters, the migration history for TOI-2420 b and TOI-2485 b is unclear: Scenarios of a high-eccentricity migration cannot be ruled out, and the characteristics of TOI-2485 b even support this scenario
    corecore