126 research outputs found

    BNYVV-derived dsRNA confers resistance to rhizomania disease of sugar beet as evidenced by a novel transgenic hairy root approach

    Get PDF
    Agrobacterium rhizogenes-transformed sugar beet hairy roots, expressing dsRNA from the Beet necrotic yellow vein virus replicase gene, were used as a novel approach to assess the efficacy of three intron-hairpin constructs at conferring resistance to rhizomania disease. Genetically engineered roots were similar in morphology to wild type roots but were characterized by a profound abundancy, rapid growth rate and, in some cases, plagiotropic development. Upon challenge inoculation, seedlings showed a considerable delay in symptom development compared to untransformed or vector-transformed seedlings, expressing dsRNA from an unrelated source. The transgenic root system of almost all seedlings contained no or very low virus titer while the non-transformed aerial parts of the same plants were found infected, leading to the conclusion that the hairy roots studied were effectively protected against the virus. This readily applicable novel method forms a plausible approach to preliminarily evaluate transgenic rhizomania resistance before proceeding in transformation and whole plant regeneration of sugar beet, a tedious and time consuming process for such a recalcitrant crop species

    Analysis of the Tomato spotted wilt virus Ambisense S RNA-Encoded Hairpin Structure in Translation

    Get PDF
    Background: The intergenic region (IR) of ambisense RNA segments from animal- and plant-infecting (-)RNA viruses functions as a bidirectional transcription terminator. The IR sequence of the Tomato spotted wilt virus (TSWV) ambisense S RNA contains stretches that are highly rich in A-residues and U-residues and is predicted to fold into a stable hairpin structure. The presence of this hairpin structure sequence in the 39 untranslated region (UTR) of TSWV mRNAs implies a possible role in translation. Methodology/Principal Findings: To analyse the role of the predicted hairpin structure in translation, various Renilla luciferase constructs containing modified 39 and/or 59 UTR sequences of the TSWV S RNA encoded nucleocapsid (N) gene were analyzed for expression. While good luciferase expression levels were obtained from constructs containing the 59 UTR and the 39 UTR, luciferase expression was lost when the hairpin structure sequence was removed from the 39 UTR. Constructs that only lacked the 59 UTR, still rendered good expression levels. When in addition the entire 39 UTR was exchanged for that of the S RNA encoded non-structural (NSs) gene transcript, containing the complementary hairpin folding sequence, the loss of luciferase expression could only be recovered by providing the 59 UTR sequence of the NSs transcript. Luciferase activity remained unaltered when the hairpin structure sequence was swapped for the analogous one from Tomato yellow ring virus, another distinct tospovirus. The addition of N and NSs proteins further increased luciferas

    A distinct tospovirus causing necrotic streak on Alstroemeria sp. in Colombia

    Get PDF
    A tospovirus causing necrotic streaks on leaves was isolated from Alstroemeria sp. in Colombia. Infected samples reacted positively with tomato spotted wilt virus (TSWV) antiserum during preliminary serological tests. Further analysis revealed a close serological relationship to tomato chlorotic spot virus (TCSV) and groundnut ringspot virus (GRSV). A major part of the S-RNA segment, encompassing the nucleocapsid (N) protein gene, the 5′ untranslated region and a part of the intergenic region 3′ of the N gene, was cloned and sequenced. The deduced N protein sequence showed highest amino acid identity (82%) to that of TCSV, indicating that the virus represents a new tospovirus species, for which the name Alstroemeria necrotic streak virus (ANSV) is coined. Phylogenetic analysis based on the N protein sequence revealed that this Alstroemeria-infecting tospovirus clustered with tospoviruses from the American continent. Frankliniella occidentalis was identified as potential vector species for ANSV

    Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells

    Get PDF
    Background: Chikungunya virus (CHIKV) is a mosquito-borne, arthrogenic Alphavirus that causes large epidemics in Africa, South-East Asia and India. Recently, CHIKV has been transmitted to humans in Southern Europe by invading and now established Asian tiger mosquitoes. To study the processing of envelope proteins E1 and E2 and to develop a CHIKV subunit vaccine, C-terminally his-tagged E1 and E2 envelope glycoproteins were produced at high levels in insect cells with baculovirus vectors using their native signal peptides located in CHIKV 6K and E3, respectively. Results: Expression in the presence of either tunicamycin or furin inhibitor showed that a substantial portion of recombinant intracellular E1 and precursor E3E2 was glycosylated, but that a smaller fraction of E3E2 was processed by furin into mature E3 and E2. Deletion of the C-terminal transmembrane domains of E1 and E2 enabled secretion of furin-cleaved, fully processed E1 and E2 subunits, which could then be efficiently purified from cell culture fluid via metal affinity chromatography. Confocal laser scanning microscopy on living baculovirus-infected Sf21 cells revealed that full-length E1 and E2 translocated to the plasma membrane, suggesting similar posttranslational processing of E1 and E2, as in a natural CHIKV infection. Baculovirus-directed expression of E1 displayed fusogenic activity as concluded from syncytia formation. CHIKV-E2 was able to induce neutralizing antibodies in rabbits. Conclusions: Chikungunya virus glycoproteins could be functionally expressed at high levels in insect cells and are properly glycosylated and cleaved by furin. The ability of purified, secreted CHIKV-E2 to induce neutralizing antibodies in rabbits underscores the potential use of E2 in a subunit vaccine to prevent CHIKV infections

    Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells

    Get PDF
    Background: Chikungunya virus (CHIKV) is a mosquito-borne, arthrogenic Alphavirus that causes large epidemics in Africa, South-East Asia and India. Recently, CHIKV has been transmitted to humans in Southern Europe by invading and now established Asian tiger mosquitoes. To study the processing of envelope proteins E1 and E2 and to develop a CHIKV subunit vaccine, C-terminally his-tagged E1 and E2 envelope glycoproteins were produced at high levels in insect cells with baculovirus vectors using their native signal peptides located in CHIKV 6K and E3, respectively. Results: Expression in the presence of either tunicamycin or furin inhibitor showed that a substantial portion of recombinant intracellular E1 and precursor E3E2 was glycosylated, but that a smaller fraction of E3E2 was processed by furin into mature E3 and E2. Deletion of the C-terminal transmembrane domains of E1 and E2 enabled secretion of furin-cleaved, fully processed E1 and E2 subunits, which could then be efficiently purified from cell culture fluid via metal affinity chromatography. Confocal laser scanning microscopy on living baculovirus-infected Sf21 cells revealed that full-length E1 and E2 translocated to the plasma membrane, suggesting similar posttranslational processing of E1 and E2, as in a natural CHIKV infection. Baculovirus-directed expression of E1 displayed fusogenic activity as concluded from syncytia formation. CHIKV-E2 was able to induce neutralizing antibodies in rabbits. Conclusions: Chikungunya virus glycoproteins could be functionally expressed at high levels in insect cells and are properly glycosylated and cleaved by furin. The ability of purified, secreted CHIKV-E2 to induce neutralizing antibodies in rabbits underscores the potential use of E2 in a subunit vaccine to prevent CHIKV infections

    Abstracts of presentations on plant protection issues at the xth international congress of virology: August 11-16,1996 Binyanei haOoma, Jerusalem, Israel Part 2 Plenary Lectures

    Get PDF

    Abstracts of presentations on plant protection issues at the fifth international Mango Symposium Abstracts of presentations on plant protection issues at the Xth international congress of Virology: September 1-6, 1996 Dan Panorama Hotel, Tel Aviv, Israel August 11-16, 1996 Binyanei haoma, Jerusalem, Israel

    Get PDF

    All you wanted to know about plant virus control

    Full text link
    corecore