65 research outputs found

    Single-experiment-detectable nonclassical correlation witness

    Full text link
    Recent progress in theories of quantum information has determined nonclassical correlation defined differently from widely-used entanglement as an important property to evaluate computation and communication with mixed quantum states. We introduce an operational method to detect nonclassical correlation of bipartite systems. In this method, we use particular maps analogous to the well-established entanglement witnesses. Thus, the maps are called nonclassical correlation witness maps. Furthermore, it is proved that such a map can be generally decomposed so that a single-run experiment is feasible for implementation in bulk-ensemble systems.Comment: 5 pages, 1 figure; v2: minor revisions, also an analytical proof has been added; v3: to appear in Phys. Rev. A, a theorem adde

    Population-only decay map for n-qubit n-partite inseparability detection

    Get PDF
    We introduce a new positive linear map for a single qubit. This map is a decay only in populations of a single-qubit density operator. It is shown that an n-fold product of this map may be used for a detection of n-partite inseparability of an n-qubit density operator (i.e., detection of impossibility of representing a density operator in the form of a convex combination of products of density operators of individual qubits). This product map is also investigated in relation to a variant of the entanglement detection method mentioned by Laskowski and Zukowski.Comment: 5 pages, 1 figure, RevTex4, v2 minor grammatical changes, typos correcte

    Nonclassical correlation in a multipartite quantum system: two measures and evaluation

    Full text link
    There is a commonly recognized paradigm in which a multipartite quantum system described by a density matrix having no product eigenbasis is considered to possess nonclassical correlation. Supporting this paradigm, we define two entropic measures of nonclassical correlation of a multipartite quantum system. One is defined as the minimum uncertainty about a joint system after we collect outcomes of particular local measurements. The other is defined by taking the maximum over all local systems about the minimum distance between a genuine set and a mimic set of eigenvalues of a reduced density matrix of a local system. The latter measure is based on an artificial game to create mimic eigenvalues of a reduced density matrix of a local system from eigenvalues of a density matrix of a global system. Numerical computation of these measures for several examples is performed.Comment: v1: 10 pages, 8 figures, IOPART, v2: introduction modified, figure 7 replaced, v3: 10 pages, 10 figures, RevTeX4, major revision with an additional measure introduced, title changed (previous title: Non-classical correlation in a multi-partite quantum system reconsidered), to appear in Phys. Rev.

    Single-experiment-detectable multipartite entanglement witness for ensemble quantum computing

    Full text link
    In this paper we provide an operational method to detect multipartite entanglement in ensemble-based quantum computing. This method is based on the concept of entanglement witness. We decompose the entanglement witness for each class of multipartite entanglement into nonlocal operations in addition to local measurements. Individual single qubit measurements are performed simultaneously, hence complete detection of entanglement is performed in a single run experiment. This approach is particularly important for experiments where it is operationally difficult to prepare several copies of an unknown quantum state and in this sense the introduced scheme in this work is superior to the generally used entanglement witnesses that require a number of experiments and preparation of copies of quantum state.Comment: 9 pages, 5 figures, minor changes have been mad
    corecore