716 research outputs found

    The effects of the next-nearest-neighbour density-density interaction in the atomic limit of the extended Hubbard model

    Full text link
    We have studied the extended Hubbard model in the atomic limit. The Hamiltonian analyzed consists of the effective on-site interaction U and the intersite density-density interactions Wij (both: nearest-neighbour and next-nearest-neighbour). The model can be considered as a simple effective model of charge ordered insulators. The phase diagrams and thermodynamic properties of this system have been determined within the variational approach, which treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation. Our investigation of the general case taking into account for the first time the effects of longer-ranged density-density interaction (repulsive and attractive) as well as possible phase separations shows that, depending on the values of the interaction parameters and the electron concentration, the system can exhibit not only several homogeneous charge ordered (CO) phases, but also various phase separated states (CO-CO and CO-nonordered). One finds that the model considered exhibits very interesting multicritical behaviours and features, including among others bicritical, tricritical, critical-end and isolated critical points.Comment: 12 pages, 7 figures; final version, pdf-ReVTeX; corrected typos in reference; submitted to Journal of Physics: Condensed Matte

    Effects of diagonal disorder on Charge Density Wave and Superconductivity in local pair systems

    Full text link
    We analyse the influence of diagonal disorder (random site energy) on Charge Density Wave (CDW) and Superconductivity (SS) in local pair systems which are described by the model of hard core charged bosons on a lattice. This problem was previously studied within the mean field approximation for the case of half filled band (n = 1). Here we extend that investigation to the case of arbitrary particle concentration (0 < n < 2) and examine the phase diagrams of the model and the behaviour of superfluid density as a function of n and the increasing disorder. Depending on the strength of random on-site energies, the intersite density-density repulsion and the concentration the model can exhibit several various phases, including homogeneous phases: CDW, SS and Bose-glass (NO) as well as the phase separated states: CDW-SS, CDW-NO and particle droplets. The obtained results for SS phase are in qualitative agreement with the available Monte Carlo calculations for two dimensional lattice. Also, in a definite range of parameters the system exhibits the phenomena which we call a disorder induced superconductivity and a disorder induced charge ordering.Comment: 21 pages, 8 figure

    Charge orderings in the atomic limit of the extended Hubbard model

    Full text link
    The extended Hubbard model in the atomic limit (AL-EHM) on a square lattice with periodic boundary conditions is studied with use of the Monte Carlo (MC) method. Within the grand canonical ensemble the phase and order-order boundaries for charge orderings are obtained. The phase diagrams include three types of charge ordered phases and the nonordered phase. The system exhibits very rich structure and shows unusual multicritical behavior. In the limiting case of tij = 0, the EHM is equivalent to the pseudospin model with single-ion anisotropy 1/2U, exchange interaction W in an effective magnetic field (mu-1/2U-zW). This classical spin model is analyzed using the MC method for the canonical ensemble. The phase diagram is compared with the known results for the Blume-Capel model.Comment: 9 pages, 10 figure

    Some properties of two dimensional extended repulsive Hubbard model with intersite magnetic interactions - a Monte Carlo study

    Get PDF
    In this paper the two dimensional extended Hubbard model with intersite magnetic Ising-like interaction in the atomic limit is analyzed by means of the classical Monte Carlo method in the grand canonical ensemble. Such an effective simple model could describe behavior of insulating (anti)ferromagnets. In the model considered the Coulomb interaction (UU) is on-site and the magnetic interactions in zz-direction (J>0J>0, antiferromagnetic) are restricted to nearest-neighbors. Simulations of the model have been performed on a square lattice consisting of N=L×L=400N=L\times L=400 sites (L=20L=20) in order to obtain the full phase diagram for U/(4J)=1U/(4J)=1. Results obtained for on-site repulsion (U>0U>0) show that, apart from homogeneous non-ordered (NO) and ordered magnetic (antiferromagnetic, AF) phases, there is also a region of phase separation (PS: AF/NO) occurrence. We present a phase diagram as well as some thermodynamic properties of the model for the case of U/(4J)=1U/(4J)=1 (and arbitrary chemical potential and arbitrary electron concentration). The AF-NO transition can be second-order as well as first-order and the tricritical point occurs on the diagram.Comment: 5 pages, 4 figures, pdf-ReVTeX, presented at 16th National School of Superconductivity: Unconventional superconductivity and strongly correlated systems, Zakopane, Poland, October 7-12, 2013, submitted to Acta Physica Polonica

    Phase separation in a lattice model of a superconductor with pair hopping

    Get PDF
    We have studied the extended Hubbard model with pair hopping in the atomic limit for arbitrary electron density and chemical potential. The Hamiltonian considered consists of (i) the effective on-site interaction U and (ii) the intersite charge exchange interactions I, determining the hopping of electron pairs between nearest-neighbour sites. The model can be treated as a simple effective model of a superconductor with very short coherence length in which electrons are localized and only electron pairs have possibility of transferring. The phase diagrams and thermodynamic properties of this model have been determined within the variational approach, which treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation. We have also obtained rigorous results for a linear chain (d=1) in the ground state. Moreover, at T=0 some results derived within the random phase approximation (and the spin-wave approximation) for d=2 and d=3 lattices and within the low density expansions for d=3 lattices are presented. Our investigation of the general case (as a function of the electron concentration and as a function of the chemical potential) shows that, depending on the values of interaction parameters, the system can exhibit not only the homogeneous phases: superconducting (SS) and nonordered (NO), but also the phase separated states (PS: SS-NO). The system considered exhibits interesting multicritical behaviour including tricritical points.Comment: 15 pages, 9 figures; pdf-ReVTeX, final version, corrected typos; submitted to Journal of Physics: Condensed Matte

    Monte Carlo study of phase separation in magnetic insulators

    Get PDF
    In this work we focus on the study of phase separation in the zero-bandwidth extended Hubbard with nearest-neighbors intersite Ising-like magnetic interactions JJ and on-site Coulomb interactions UU. The system has been analyzed by means of Monte Carlo simulations (in the grand canonical ensemble) on two dimensional square lattice (with N=L×L=400N=L\times L =400 sites) and the results for U/(4J)=2U/(4J)=2 as a function of chemical potential and electron concentration have been obtained. Depending on the values of interaction parameters the system exhibits homogeneous (anti-)ferromagnetic (AF) or non-ordered (NO) phase as well as phase separation PS:AF/NO state. Transitions between homogeneous phases (i.e. AF-NO transitions) can be of first or second order and the tricritical point is also present on the phase diagrams. The electron compressibility KK is an indicator of the phase separation and that quantity is of particular interest of this paper.Comment: 4 pages, 3 figures; pdf-ReVTeX; updated references; presented at The European Conference PHYSICS OF MAGNETISM 2014 (PM'14), June 23-27, 2014, Poznan, Poland; submitted to Acta Physica Polonica
    corecore