3,101 research outputs found
Some lessons for us scientists (too) from the "Sokal affair"
In this little non-technical piece, I argue that some of the lessons that can
be learnt from the bold action carried out in 1996 by the physicist Alan Sokal
and typically known as the "Sokal affair" not only apply to some sector of the
humanities (which was the original target of the hoax), but also (with much
less intensity, but still) to the hardest sciences
The relevance of ontological commitments
In this introductory note, I describe my particular view of the notion of
ontological commitments as honest and pragmatic working hypotheses that assume
the existence (out there) of certain entities represented by the symbols in our
theory. I argue that this is not naive, in the sense that it does not entail
the belief that the hypotheses could ever be proved to be true (or false), but
it is nevertheless justified by the success and predictive power of the theory
that contains the concepts assumed to exist. I also claim that the ontological
commitments one holds (even if tacitly so) have a great influence on what kind
of science is produced, how it is used, and how it is understood. Not only I
justify this claim, but I also propose a sketch of a possible falsification of
it. As a natural conclusion, I defend the importance of identifying, clarifying
and making explicit one's ontological commitments if fruitful scientific
discussions are to be had. Finally, I compare my point of view with that of
some philosophers and scientists who have put forward similar notions.Comment: Submitted for peer-revie
Discovery of periodic dips in the light curve of GX 13+1: the X-ray orbital ephemeris of the source
The bright low-mass X-ray binary (LMXB) GX 13+1 is one of the most peculiar
Galactic binary systems. A periodicity of 24.27 d with a formal statistical
error of 0.03 d was observed in its power spectrum density obtained with RXTE
All Sky Monitor (ASM) data spanning 14 years. Starting from a recent study,
indicating GX 13+1 as a possible dipping source candidate, we systematically
searched for periodic dips in the X-ray light curves of GX 13+1 from 1996 up to
2013 using RXTE/ASM, and MAXI data to determine for the first time the X-ray
orbital ephemeris of GX 13+1. We searched for a periodic signal in the ASM and
MAXI light curves, finding a common periodicity of 24.53 d. We folded the 1.3-5
keV and 5-12.1 keV ASM light curves and the 2-4 and 4-10 keV MAXI light curves
at the period of 24.53 d finding a periodic dip. To refine the value of the
period we used the timing technique dividing the ASM light curve in eight
intervals and the MAXI light curve in two intervals, obtaining four and two dip
arrival times from the ASM and MAXI light curves, respectively. We improved the
X-ray position of GX 13+1 using a recent Chandra observation. The new X-ray
position is discrepant by \sim 7\arcsec from the previous one, while it is
compatible with the infrared and radio counterpart positions. We detected an
X-ray dip, that is totally covered by the Chandra observation, in the light
curve of GX 13+1 and showed, a-posteriori, that it is a periodic dip. We
obtained seven dip arrival times from ASM, MAXI, and Chandra light curves. We
calculated the delays of the detected dip arrival times with respect to the
expected times for a 24.52 d periodicity. Fitting the delays with a linear
function we find that the orbital period and the epoch of reference of GX 13+1
are 24.5274(2) days and 50,086.79(3) MJD, respectively.(Abridged)Comment: 12 pages, including 16 figures. Accepted for publication in A&
Chandra X-ray spectroscopy of a clear dip in GX 13+1
The source GX 13+1 is a persistent, bright Galactic X-ray binary hosting an
accreting neutron star. It shows highly ionized absorption features, with a
blueshift of 400 km s and an outflow-mass rate similar to the
accretion rate. Many other X-ray sources exhibit warm absorption features, and
they all show periodic dipping behavior at the same time. Recently, a dipping
periodicity has also been determined for GX 13+1 using long-term X-ray folded
light-curves, leading to a clear identification of one of such periodic dips in
an archival Chandra observation. We give the first spectral characterization of
the periodic dip of GX 13+1 found in this archival Chandra observation
performed in 2010. We used Chandra/HETGS data (1.0-10 keV band) and
contemporaneous RXTE/PCA data (3.5-25 keV) to analyze the broadband X-ray
spectrum. We adopted different spectral models to describe the continuum
emission and used the XSTAR-derived warm absorber component to constrain the
highly ionized absorption features. The 1.0-25 keV continuum emission is
consistent with a model of soft accretion-disk emission and an optically thick,
harder Comptonized component. The dip event, lasting 450 s, is
spectrally resolved with an increase in the column density of the neutral
absorber, while we do not find significant variations in the column density and
ionization parameter of the warm absorber with respect to the out-of-dip
spectrum. We argue that the very low dipping duty-cycle with respect to other
sources of the same class can be ascribed to its long orbital period and the
mostly neutral bulge, that is relatively small compared with the dimensions of
the outer disk radius.Comment: 13 pages, 15 figures, accepted for publication in Astronomy and
Astrophysic
- …
